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Preface 

A one-day meeting in March 1999 at Nottingham was convened to explore techniques 
for modeling human performance in synthetic environments. A list of participants is 
available as Appendix A. The presentations served as preliminary versions of some chapters 
of this book. The chapters were expanded based on the day's discussions, extended 
reflection, and further informal discussion. 

Unlike a very similar, earlier review (Elkind, Card, Hochberg, & Huey, 1990) that noted 
the need to develop theory before applying such models, we are able to conclude that the 
models presented here are available and useful. The question remaining is how to improve 
them. We found that the resulting report was usable as a general update to Pew and Mavor's 
(1998) book, as it reviewed work that was done after their book. In particular, we were able 
to examine a wider variety of cognitive architectures developed outside the United States. 
This report also provides a detailed source of further ideas and suggestions for projects. We 
particularly draw the reader's attention to the importance of the integration and usability of 
models. Some implications apply more to the United Kingdom and Australia, but nearly all 
are general. 

The report proved popular, so we updated it and looked for a publisher to help 
disseminate it more widely. Mike McNeese was instrumental in putting us in touch with the 
Human Systems Information Analysis Center (HSIAC). We are grateful to HSIAC for 
agreeing to publish this book and preparing it for publication. Comments from Jeffrey A. 
Landis, HSIAC Publications Manager and Editor, and Dr. Michael Fineberg, HSIAC Chief 
Scientist, have significantly improved this work. We appreciate their support. 

Stephen Croker and Peter Lonsdale provided useful comments and helped assemble 
these materials. In addition to the workshop participants listed, we thank Angie Barnhill, 
Tim Barnhill, Christina Bartl, Kevin Gluck, Simon Goss, Ian Greig, Robin Hollands, 
Nicholas Howden, Jim Jansen, Andrew Lucas, Mike McNeese, Emma Norling, Ralph 
Ronnquist, and Colin Sheppard for their help or comments. Brian Logan and Aaron Sloman, 
while not listed as authors, did provide material that substantially helped in the preparation 
of the book. This project was primarily supported by DERA (Bedford, UK) under contract 
LSA/E20307, and also by DSTO (Australia) and later by the (US) Office of Naval Research 
(contracts N000140110243, N000140110547, and N000140210021). The conclusions 
reported here, however, are solely the responsibility of the authors. 

Frank E. Ritter 
University Park, Pennsylvania 
January 2003 
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CHAPTER 1 

Tasks and Objectives for Modeling Behavior in 
Synthetic Environments 

There are now numerous models of human behavior in Synthetic Environments (SEs), 
and they serve a multitude of uses. It is worthwhile considering where and how to improve 
these models to provice more realistic human behavior. This report provides a more recent 
review of work following Pew and Mavor (1998), and provides a detailed source of further 
ideas and suggestions. In addition to noting areas where models could be expanded to 
include more complete performance, we particularly draw the reader's attention both to the 
importance of the integration of models (and thus their reuse) and to the usability of models. 
We will argue that improved usability (and reusability) is necessary for these models to 
achieve their potential. We extend Pew and Mavor's results by examining architectures 
(e.g., COGENT, JACK, hybrid architectures) that were not included or available when Pew 
and Mavor compiled their report, and by summarizing several promising areas for further 
work that have arisen recently. 

This report reflects the biases and specific expertise of the authors as they attempt to 
identify a wide range of potential problems and provide possible solutions. Some of the 
proposed projects are high risk and not all of the authors agree that these projects can be 
accomplished. All agree, however, that if possible, they would be rewarding. Given the 
diversity of human behavior, there remain many issues not covered here. For example, many 
aspects of teamwork are important but not examined here. Most of the systems and 
architectures reported here are continually evolving. Because of the rapid pace of 
development in this area, our review may underestimate the capabilities of these systems 
and several of our suggestions may already be incorporated in them. 

1.1 The Role of Synthetic Forces 

There are several commonly acknowledged uses of cognitive models in synthetic 
environments. These uses have included at least the range shown in Table 1.1. This is a 
wide set. Pew and Mavor (1998) focused on the application of synthetic forces to training 
partly because the major applications and successes of synthetic forces have been in this 
domain. Further uses of synthetic forces have been outlined in other reviews (Computer 
Science and Telecommunications Board, 1997; Lucas & Goss, 1999; Synthetic- 
Environments Management Board, 1998). 
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Table 1.1: Potential Uses of Models in Synthetic Force Environments 

• Training leaders 

• Joint and combined training 

• Training other personnel (e.g., support and logistics) 

• Testing existing doctrine 

• Testing possible future procurements 

• Testing new doctrine 

• Serving as a formal, runnable description of doctrine 

The user community for synthetic forces would be better served if all these uses were 
supported by a single system or approach. Currently, the models of behavior in these 
systems have often been developed without a long-term plan, and are only usable within the 
simulation for which they were developed. Historically, few single systems have supported 
more than one or two of the uses noted in Table 1.1. This is wasteful and can lead to 
different behaviors being taught or used in different simulations when they should be 
exactly the same behavior. The use of the Distributed Interactive Simulation (DIS) protocol 
for distributed simulation is a step toward integration, but it does not apply to 
behavior itself. 

While having a single system or approach is highly desirable, there are good reasons 
why multiple systems are currently used (in addition to a multitude of bad reasons as well). 
Perhaps the most important reason why there are multiple models of behavior is that 
existing approaches to modeling cannot support all of the uses in Table 1.1 equally well. 
Models that focus on aggregate, or large unit behavior, do not support low-level simulations 
very well. Models that predict average behavior are much less useful for practicing tactics 
and procedures. Models that are good for training provide detailed data that have to be 
extensively summarized and aggregated to be of use to planners. Planners and evaluators, 
for example, may find useful data in large simulations such as the Purple Link exercise, part 
of STOW97 (further information is available from Ceranowicz, 1998, as well as from 
www.striccmarmy.mil/STRKX)M/DRST^^ although such simulations cannot yet 
be convened within an afternoon or even a week to examine how a new platform performs. 
This report will makes suggestions on all of these levels, but it does not intend to be 
comprehensive. 

1.2 Definition of Terms 

There are several terms used in this report that have meanings specific to the domain of 
behavioral modeling. The term model, for example, will refer exclusively to cognitive 
models, and the term "simulation" will refer exclusively to task simulations. We review 
these terms here, starting by introducing synthetic forces. Modular Semi-Automated forces 
(ModSAF) is briefly explained to provide a common system as a point of reference. We 
then define the terms we will use with respect to models of behavior. 

Human Systems IAC SOAR, 2003 



Chapter 1. Tasks and Objectives for Modeling Behavior in Synthetic Environments 

1.2.1 Synthetic Forces 

Synthetic forces exist in military simulations, sometimes alongside real forces that have 
been instrumented and linked to the simulation. There are now synthetic force simulations 
covering all of the armed services. Synthetic forces can be separated into two components, 
physical and behavioral. The physical aspects represent the movement and state of platforms 
(objects) in the simulation, including such aspects as maximum speed and the set of actions 
that can be performed in the world. The physical aspects provide constraints on behavior. 
Simulations of the physical aspects are fairly complete now for most purposes, although 
they remain important in their own right (Computer Science and Telecommunications 
Board, 1997; Synthetic Environments Management Board, 1998). 

The behavioral aspects of a synthetic force platform determine where, when, and how it 
performs the physical actions, that is, its behavior. Many human and entity behaviors can be 
simulated, such as movement and attack, but behavior has been less veridically modeled 
than physical performance. The next step to increase realism is not only to include further 
intelligent behavior but also to match more closely the timing and sequence of human 
behavior when performing the same tasks. 

1.2.2 Modular Semi-Automated Forces 

Modular Semi-Automated Forces (ModSAF) is a system for simulating entities 
(platforms) on a simulated battlefield (Loral, 1995). It is perhaps the most widely used 
behavioral simulator in military synthetic environments. The goal of ModSAF is to replicate 
the behavior of simulated platforms in sufficient detail to provide useful training and 
simulation of tactics. 

ModSAF includes the ability to simulate the most common types of physical platforms, 
such as a tank, and external effects on those platforms, like weather and smoke. The terrain 
is defined in a separate database, which is shared by other simulators in the same exercise 
using the DIS simulation protocol. Multiple platforms can be simulated by a single 
ModSAF system. 

The local platforms interact with remote platforms by exchanging approximately 20 
different types of information packets. Examples of packet types include announcing where 
the platform is located (the other platforms compute whether the originator can be seen), 
where radar is being emitted, and where shots are being fired. Thus, the features of the 
packets vary. Each simulation is responsible for updating its own position and computing 
what to do with the information in each packet, so that a tank does not directly shoot another 
tank, for example. Attackers send out projectile packets and the target tank computes that it 
would be damaged by their projectiles. 

Some semi-intelligent behaviors are included in ModSAF through a set of about 20 
different simple scripts. These scripts support such activities as moving between two points, 
hiding, and patrolling. 

ModSAF is a large system. It can be compiled into several major versions, including 
versions to test networks and specific versions for each service. The terrain databases each 
include up to 1 gigabyte of data. In 1999, simulating multiple entities required a relatively 
fast workstation (100 MHz+) with a reasonable amount of memory (32 MB+). 
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A major problem is usability as ModSAF is large and has a complicated syntax. Users 
report problems learning and using it. A better way to provide its functionality needs to be 
found or its usability needs to be improved directly. 

1.2.3 Frameworks, Theories, Models, and Cognitive Architectures 

It is common in cognitive science to differentiate between several levels of theorizing 
(e.g., Anderson, 1983; 1993, chap. 1) and defining these levels now will help us in the 
remainder of this report. Framework refers to the specification of a few broad principles, 
with too many details left unspecified to be able to make empirical predictions. For 
example, the idea that human cognition acts as a production system offers a framework for 
studying the human mind. 

Theory adds more precision to frameworks, and describes data structures and 
mechanisms that at least allow qualitative predictions to be made. For example, the 
production system principles presented in Newell and Simon (1972) form a theory of human 
cognition. 

Models are theories implemented as computer programs or represented mathematically 
to apply to specific situations or types of situations. While generally more limited in their 
domain of application than theories, models typically provide more accurate, quantitative 
predictions. 

Cognitive architecture has two meanings: (1) specifications of the main modules and 
mechanisms underlying human cognition, and (2) the computer program implementing 
these specifications. These meanings are separate and distinct but usually are used as 
equivalent. Cognitive architectures, as proposed by Newell (1990), offer a platform for 
developing cognitive models rapidly while keeping the theoretical coherence between these 
models intact. These cognitive architectures are often seen as equivalent to Unified Theories 
of Cognition (UTC), a way to pull all that is known about cognition into a single theory. In 
Appendix B we include brief descriptions of two commonly used cognitive architectures, 
ACT-R and Soar. 

There exists no generally agreed definition of hybrid architectures. Some use the term 
when a cognitive architecture includes symbolic features (e.g., a production system) as well 
as non-symbolic features (e.g., neural net spreading of activation among memory elements); 
others, such as Pew and Mavor (1998), use the term when two or more architectures of any 
kind are combined (e.g., Soar and EPIC). We use the latter definition here because this type 
of hybrid architecture has become more important and more frequently used. 

When comparing theoretical proposals, it is essential to keep in mind the level at which 
the proposals were formulated. Typically, a framework will cover a large amount of 
empirical regularities without specifying many details, while a model will cover a small 
amount of data with great precision. It is generally agreed that models are more useful 
scientifically than theories or frameworks because they make clear-cut predictions that can 
be tested with empirical data, and hence, are less amenable to ad hoc explanations (Popper, 
1959). Models are, however, harder to create and use. 
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1.3 Summary of Modeling Human and Organizational Behavior 

While the reader is likely to have seen Pew and Mavor's (1998) Modeling Human and 
Organizational Behavior, we briefly review it here to provide background for readers not 
familiar with it and to provide some useful context. In their book, Pew and Mavor review 
the state of the art in human-behavior representation as applied to military simulations, with 
an emphasis on cognitive, team, and organizational behavior. Their book is based on a panel 
that met for 18 months and drew extensively on a wide range of researchers. It is available 
as a hardcopy book, as well as online (books.nap.edu/catalog/6173.html). — 

Pew and Mavor look not just at representing behavior, but also at methods for 
generating behavior. They provide a review of the uses of models of behavior in synthetic 
environments. They include a review of the major synthetic environments in use by the U.S. 
military. These environments are examples of the range of current and potential uses and 
levels of simulation. 

Their book provides a useful summary of integrated (cognitive) architectures. It is 
comprehensive and clear enough that we have used it to teach undergraduate students. Their 
summary includes a table comparing the architectures. We will apply the same table to 
review several additional architectures. 

Their book also reviews the important areas to modeling human behavior in synthetic 
environments. This is a very wide range, encompassing nearly all of human behavior. Their 
book reviews attention and multi-tasking, memory and learning, human decision making, 
situation awareness, planning, behavior moderators (such as fatigue and emotions), 
organizational (small group) behavior, and information warfare (e.g., how the order of 
information presentation influences decision making). Their book concludes with a 
framework for developing models of human behavior followed by conclusions and 
recommendations. Each of these reviews is clearly written and limited only by the space it is 
allowed. The reviews are quite positive, suggesting that major aspects of behavior are either 
already being modeled, or can and will be modeled within a few years. This positive tone is 
in stark contrast to a similar review a decade earlier, which could only note open questions 
(Elkind, Card, Hochberg, & Huey, 1990). 

1.4 What Modeling Human and Organizational Behavior Does Well 

Pew and Mavor's book is a useful and seminal book for psychology and modeling. 
Their book is useful because the reviews it provides, while they could be extended, are 
unusually clear and comprehensive, covering the full range of relevant behavior. It could 
serve as a useful textbook for professionals in other areas to teach them current results and 
problems in the areas of psychology and modeling. 

Their book is seminal because the authors lay out a complete review of cognition that is 
widely usable. While their review is similar to Newell's (1990) and Anderson and Lebiere's 
(1998) reviews, Pew and Mavor's review is not situated within a single architecture; the 
result is a more global and only slightly less-directed view. 
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The reviews of the models and data to be modeled together, because of their scope and 
potential impact, constitute a call to arms for modelers of synthetic forces. The juxtaposition 
of the data and ways to model them is enticing and exciting. This approach of modeling 
behavior will significantly influence psychology in general if the modeling work continues 
to be successful. Models of synthetic forces in the near future will subsume enough general 
psychology data that they will simply represent the best models in psychology. 

1.5 Where Modeling Human and Organizational Behavior Can Be Improved 

There are surprisingly few problems with Pew and Mavor's review. However, they do 
not review all of the possible regularities of human behavior. We will add a few additional 
important regularities and provide further arguments to support many of their main 
conclusions. They could have referenced, for example, the Handbook of Perception and 
Human Performance (Boff, Kaufman, & Thomas, 1986) and the Engineering Data 
Compendium (Boff & Lincoln, 1988) for a wide-ranging list of existing general regularities 
in perception and performance (the latter reference has also been put into a CD-Rom version 
as well, see iac.dtic.mil/hsiac/products/cashe/cashe.html). In the area of human decision 
making, Dawes' (1994) review is also valuable. Pew and Mavor do not cite a quite relevant 
report on how this type of modeling is also being developed as entertainment (Computer 
Science and Telecommunications Board, 1997), and, not surprisingly, they could not report 
a concurrent similar United Kingdom review (Synthetic Environments Management Board, 
1998). 

On a high level and early on, they explicitly note that they will not review the usability 
of behavioral models. We will argue that improved usability is necessary for these models to 
achieve their potential. 

They do not have the space to review all the integrative (cognitive) architectures. While 
it would be unfair to call this book dated at this point in time, there are already a few 
architectures worth considering that were not available to them. 

They do not dwell on the ability to describe human behavior, instead they focus on how 
to generate it. There remains some need to be able to describe the behavior before 
generating it, which we will take up below. 

Finally, they did not have the space to lay out very detailed projects to fulfill their 
short-, medium-, and long-term goals. We provide a more detailed, but still incomplete, set. 

1.6 Structure of This Report 

Chapter 2 provides amplifications, updates, and additions to Pew and Mavor's list of 
psychological regularities that should be included in models of human behavior. Chapter 3 
notes problems integrating models with simulations as well as problems integrating them 
with each other to make larger, more complete models. Chapter 4 takes up the issues 
surrounding usability of behavioral models. Usability of the models themselves was 
considered to be outside the scope of Pew and Mavor's report (1998, p. 10). We will argue 
that improving the usability of these models by their creators and other analysts is not only 
desirable, but necessary for the success of modeling itself. Chapter 5 considers new 
techniques   and   cognitive   architectures   for   modeling   human   behavior   in   synthetic 
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environments with respect to the aims of the previous two chapters. Chapter 6 concludes 
with a list of projects to address problems identified in Chapters 2, 3, and 4 based on the 
techniques and architectures in Chapter 5. 
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CHAPTER 2 

Current Objective: More Complete Performance 

There are a wide range of behaviors that have yet to be incorporated into existing 
models. Included in this list are numerous additional relevant regularities about human 
behavior (see Boff & Lincoln, 1988, for a subset). The question that must be addressed is: 
which behaviors are the most important and most accessible to incorporate? We note here 
several of the most promising or necessary behaviors to be included next in models of 
human performance, based on our experiences and previous work. 

The suggestions we make later tend to be based on modeling the individual. Much of 
the behavior being modeled currently in synthetic environments is different because it needs 
to include small and large groups and is aggregated across time or situations. As smaller 
time scales and more intricate and fine-grained simulations are developed and used, such as 
for modeling urban terrorism, the behavioral issues noted here will become more important. 

We start with learning. While Pew and Mavor include learning as a useful aspect of 
performance, we believe learning to be essential. We also expand the case for including 
models of working memory, perception, emotions and behavioral moderators, and erroneous 
behavior. We then can examine higher-level aspects of behavior to be considered, starting 
with integration of models and ending with information overload. 

2.1 Learning 

Learning is mentioned as important in several ways by Pew and Mavor (1998). 
Learning (i.e., training) is the largest role of the military in peace time (i.e., rehearsal, p. 30), 
essential for multi-tasking behavior (pp. 114-115), an important aspect of human behavior 
(chap. 5), and important within groups (chap. 10). We cover learning again here. 

Pew and Mavor mention several of the advantages of learning. There are several 
additional advantages that we can emphasize. Tactics are influenced by learning. In 
addition, there is a home-field advantage: working within your own territory, because you 
know it, makes additional tactics feasible and provides generally improved performance. 
(Working within your own territory would also provide some additional motivation.) 

Including learning in models would provide a mechanism for producing different levels 
of behavior. Experienced troops, for example, would be different not in some numeric way 
in that they react faster (although this is probably true), but in a more qualitative way in that 
they know more and use different strategies. Learning modifies, constrains, and supports the 
use of computer interfaces (Rieman, Young, & Howes, 1996); similar effects may be found 
in exploring terrain and implementing tactics in new geographic spaces. 

Programming—that is, creating the model directly—may be too difficult. It may be 
easier for models to learn behaviors than for these behaviors to be programmed directly. 
This argument has been put forward by connectionist researchers for some time. 
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Theoretical work in this area of learning has direct implications for training within the 
military and within schools. Models that learn can be used to understand and optimize 
learning (Ohlsson, 1992). If we can program models to learn, the behavior and knowledge 
that result may be different from the initial knowledge that the system started with or from 
the expert performance that we currently teach. This final knowledge may be useful for 
teaching. In the case of photocopying (Agre & Shrager, 1990), for example, better strategies 
arise through practice but are not valuable enough to teach. In military domains, it may be 
useful to find and then to teach the improved strategies that may arise from grossly extended 
practice, that is, tactics that are better but that no person has had enough practice to learn 
before. At that point, explanation of behavior will also become important to understand why 
the new behavior is useful so that it is trusted. 

2.2 Expertise 

Expert behavior has an important role to play in models of human performance 
(Shadbolt & O'Hara, 1997). One of the Western powers' greatest strengths is training in 
depth and breadth. Practice influences speed of processing and error rates, particularly under 
stress. If synthetic forces are to be used to test doctrine, the effect of training on expertise 
must be included. 

Expert behavior has been studied extensively in recent years and a great deal is known 
about it (Chipman & Meyrowitz, 1993; Ericsson & Kintsch, 1995; Gobet, 1998; Gobet & 
Simon, 2000; Hoffman, Crandall, & Shadbolt, 1998). Some essential characteristics of 
expertise are highly developed perception for the domain material, selective search for 
solutions in that domain, and a good memory for domain-related material. In most domains, 
problem-solving behavior (search) differs as well: novices tend to search backward from the 
situation to find solutions and experts tend to search forward from the situation to find 
solutions (Larkin, McDermott, Simon, & Simon, 1980). Finally, transfer of expertise to 
other domains is limited. 

Klein and his colleagues (e.g., Klein, 1997) have studied real-time performance in real 
settings (as opposed to laboratory settings) in detail, and have essentially found that the 
characteristics mentioned above are also critical in these situations. A number of rather 
extensive reviews have been undertaken of Klein's approach, which is often referred to as 
Naturalistic Decision Making (NDM) (e.g., Hoffman & Shadbolt, 1995). A method to elicit 
this type of knowledge has been developed by Klein and his associates. It is known as the 
Critical Decision Method and is described in Hoffman et al. (1998). The specifically real- 
time challenges of acquiring knowledge relating to perceptually cue-rich decision making 
are discussed in a second Defence Evaluation and Research Agency (DERA), United 
Kingdom, report by Hoffman and Shadbolt (1996). 

Given the fact that it takes a long time to become an expert—the rule of 10 years or 
10,000 hours of practice and study is often mentioned (e.g., Simon & Chase, 1973)—the 
size of the dataset has made it difficult indeed to study real-time learning on the road to 
expertise. However, real-time learning in simpler problem-solving tasks has been studied 
and modeling accounts have been provided (Anzai & Simon, 1979; John & Kieras, 1996; 
Nielsen & Kirsner, 1994; Ritter & Bibby, 2001). Some of these results may apply to expert 
learning in more complex tasks as well. 
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While experts vastly outperform non-experts in most domains, exceptions to this rule 
have been found in domains such as clinical diagnosis, clinical prediction, personnel 
selection, and actuarial predictions (Dawes, 1988). In these domains, experts perform only 
slightly better than non-experts, and typically perform worse than simple statistical methods, 
such as regression analysis. One other aspect of behavior that distinguishes experts from 
novices is the ability to recover from errors. An important question is to which category 
military diagnosing and prediction belong because of the uncertainties involved? And, based 
on this answer, what can be done (either by providing formal tools or by improving training) 
to remedy this situation and assist error recovery? 

The effect of learning local environments and strategies (own and opponent's) must also 
be included. Having learned the local terrain probably explains much of the home-field 
advantage. How does this learning occur? 

Within the sub-field of knowledge-engineering there have been considerable efforts to 
produce methodologies for the acquisition, modeling and implementation of knowledge- 
intensive tasks. It is a moot point whether the resulting decision-support systems are 
cognitively plausible. Nevertheless, these methodologies now provide powerful ways of 
constructing complex systems that exhibit task-oriented behavior. To this end, anyone 
engaged in engineering large-scale synthetic environments should look at the principles laid 
down in the most recent of this work. The most accessible source is probably Schreiber et al. 
(2000). 

2.3 Working Memory 

Central to all questions about human cognition and performance is the role of working 
memory. Working memory is implicated in almost all aspects of cognitive performance 
(Boff & Lincoln, 1986, Sec. 7; Just & Carpenter, 1992; Newell & Simon, 1972; Wickens, 
1992). It is widely agreed that limitations of working memory are a major determinant of 
limitations of cognitive performance. Definitions of working memory are varied but for 
present purposes we can take it to refer to the mechanisms that maintain and provide access 
to information created or retrieved during the performance of a task. 

Modern approaches to the psychological study of human working memory often take as 
their starting point the famous paper by Miller (1956) and argue that people can retain only 
around "7 +/- 2" items in short-term memory. Later work has tended to revise that estimate 
downwards, towards three to four items of unrelated information (Crowder, 1976; Simon, 
1974). 

A more recent and influential line of work by Baddeley (1986, 1997) presents working 
memory as a dual system for the rehearsal of information, consisting of (1) a phonological 
loop, that contains approximately 2 seconds of verbalizations, for the rehearsal of 
phonological, acoustic, or articulatory information (e.g., useful for repeating a phone 
number until you dial it); and (2) a visual-spatial scratchpad, with a smaller and less- 
determined capacity (e.g., useful when searching for an object that you have just seen), to 
play an analogous role for the maintenance of pictorial and spatial information. 
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Other approaches within experimental psychology place more emphasis on the role of 
working memory in both storing and manipulating temporary information (Daneman & 
Carpenter, 1980; Just & Carpenter, 1992). An important recent extension to the notion of 
working memory comes from the study of expertise, where Ericsson and Kintsch (1995) 
argue that after extensive practice in a particular domain people can, through specialized 
retrieval structures, use long-term memory for the rapid storage of temporary information 
(i.e., long-term working memory). 

A recent book (Miyake & Shah, 1999) reviews a range of current approaches to the 
modeling of working memory, although many of the models do not have the explicitness 
and generality needed to support the simulation of human performance in complex tasks. Of 
those that do, their view of working memory varies widely. Some, such as ACT-R 
(Anderson & Lebiere, 1998) and CAPS (Just & Carpenter, 1992), consider working memory 
not as a separate structural entity but rather as an activated region of a larger, more general 
memory system, in which the limitations of working memory derive from a limited total 
quantity of activation. Just and Carpenter (1992), and more recently ACT-R models, have 
extended that view to the modeling of individual differences in working memory where 
different people are assumed to have different maximum quantities of available activation 
(Daily, Lovett, & Reder, 2001; Lovett, Daily, & Reder, 2000). A number of these ideas are 
put together by Byrne and Bovair (1997) who modeled (in CAPS) the way that a class of 
performance errors, in which people forget to complete subsidiary aspects of a task (such as 
removing the original from a photocopier), is affected by working memory load. 

In contrast to these resource-limited models, Soar (Laird, Newell, & Rosenbloom, 
1987; Newell, 1990) imposes no structural limitation on working memory. Using Soar, 
Young and Lewis (1999) explore the possibilities of working memory being constrained 
not by physical resources but by functional limitations and by specific kinds of similarity- 
based interference. 

In summary, the current position is that human performance is known to be highly 
dependent on working memory and working memory load, and to be susceptible to factors 
such as individual differences (Just & Carpenter, 1992), distractions (Byrne & Bovair, 
1997), emotion and stress (Boff & Lincoln, 1988), and expertise (Ericsson & Kintsch, 
1995). Many existing models of human performance (e.g., as reviewed in Pew & Mavor, 
1998) do not directly model the role of working memory. Models exist (Miyake & Shah, 
1999), and some approaches to cognitive modeling (ACT-R, CAPS, Soar) have potential for 
improving predictions of human performance in realistic task situations by including more 
accurate theories of memory. There remains a need for the investigation and development of 
more explicit and complete models, with broader scope, of the role of working memory in 
human performance. 

2.4 Emotions and Behavioral Moderators 

Emotion, affect, motivation, and other behavioral moderators are increasingly being 
seen as factors that can and often do influence cognition. This view has received attention 
among a range of computer scientists and psychologists. Pew and Mavor (1998, chap. 9) lay 
out an initial case for including emotion as an internal moderator of behavior. The British 
HCI Group sponsored a one-day meeting on "Affective Computing: The Role of Emotion in 
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Human Computer Interaction" that attracted 70 people to University College, London 
(Monk, Sasse, & Crerar, 1999). Picard's (1997) recent book provides a useful review of 
emotions and computation in general. Sloman's (1999) review of the book and Picard's 
(1999) response are useful summaries. A further case is also made in the section on the 
SimAgent Toolkit. We present here an additional argument for including a model of 
emotions and behavioral moderators in models of synthetic forces, note two potential 
problems with existing models, and sketch an initial theory. 

2.4.1 Further Uses of Emotions and Behavioral Moderators 

Models of emotions and behavioral moderators may be necessary for modeling non- 
doctrinal performance such as insubordination, fatigue, errors, and mistakes. Many authors 
have also noted the role of emotion in fast, reactive systems (Picard, 1997, provides a useful 
overview). Individual differences in emotions may be related to personality and differences 
in problem solving. That is, the range of emotions may be best explained as an interaction 
that arises between task performance and situation assessment and an agent's likes, desires, 
and personal cognitive style. An argument is starting to be put forward that changes in 
motivation based on temporally local measures of success and failure may help problem 
solving (Belavkin, 2001; Belavkin & Ritter, 2000; Belavkin, Ritter, & Elliman, 1999). 

2.4.2 Working Within a Cognitive Architecture 

Emotions arise from structures related to cognition and should be closely related to and 
based on cognitive structures. All of the arguments for creating a unified theory of cognition 
(Anderson, Matessa, & Lebiere, 1998; Newell, 1990) also apply to creating a unified theory 
of emotion as well. The effects of emotions and other behavioral moderators on cognition 
are presumably not task-specific, so their implementation belongs in the architecture, not in 
the task knowledge. 

Theories of emotions should thus be implemented within a cognitive architecture. This 
will allow them to realize all the advantages of being within a cognitive architecture, 
including being reusable and being compared to and incorporated within other models. 
Some models of emotions have been built within a cognitive architecture (Bartl & Dorner, 
1998; Belavkin, Ritter, & Elliman, 1999; Franceschini, McBride, & Sheldon, 2001; Gratch 
& Marsella, 2001; R. Jones, 1998; Rosenbloom, 1998). Being created within an 
information-processing model has required them to be more specified than previous 
theories. Being part of a model that performs the task has also allowed them to make 
more predictions. 

2.4.3 A Sketch of a Computational Theory of Emotions 

An important aspect of cognition is to process sensory information, assign meaning to it, 
and then decide upon a plan of action in response. This is a real-time process in which new 
sensory information arrives continuously. This view is similar to the view put forward by 
Agre and Chapman (1987) about representationless thinking. The plan must therefore be 
dynamically reconfigurable and will often be abandoned in favor of a better plan midway 
through its execution. Elliman has a speculative view of the role of emotions in cognition. 
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similar to Rasmussen's (1998) stepladder framework  of behavior,  which  makes  the 
following assumptions: 

• The amount of sensory data available at any moment is too large for attention to be 
given to more than a small fraction of the data. 

• The conscious consideration of the results of perception is an expensive process in 
terms of the load on neural hardware and also time-consuming. 

• Most sensory processing is unconscious in its early stages in order that expensive 
conscious processes need consider only the results of perception. These results 
might include labeled objects with a position in space, for example "a tank moving 
its turret in that clump of trees." Conscious processes might well add further detail 
such as the type of tank and the range of its gun. 

• Attentional mechanisms are needed to direct the limited high-level processing to the 
most interesting objects. These may be novel, brightly colored, fast-moving, or 
potentially threatening. 

• Planning is an especially heavy computational process for the human mind and one 
that is difficult to carry out effectively under combat conditions. (Perhaps the best 
way to explain why military doctrine is useful is that it distills the best generic 
practice and trains the soldier to behave in a way that might well have been a chosen 
and planned behavior if the individual had the time and skill to formulate the action 
himself. The danger is that no doctrine can envisage all scenarios in advance and, on 
occasion, the use of doctrine in a rigid manner may be harmful.) 

• From an evolutionary perspective this system of unconscious processing of sensory 
input, attentional mechanisms, and cognitive planning (together with speech-based 
communication) is a masterstroke of competence for survival. However, it has one 
crippling disadvantage—it is too slow to react to immediate and sudden attack. 

Rapid reaction to possible threat without the time for much cognitive processing is 
clearly of huge value. In this framework emotion can be seen as kind of labeling process for 
sensory input. Fear particularly fits this pattern and is a label that causes selected sensory 
input to literally scream for attention. For this process to work rapidly it needs to be 
hardwired differently than higher-level cognitive processes. There is strong evidence that 
the amygdala is intimately involved in the perception of threat and able to trigger the 
familiar sensation of fear (e.g., Whalen, 1999). If this organ of the brain is damaged, 
individuals may find everyday events terrifying while not perceiving any need for alarm in 
life-threatening situations. 

This rapid, emotive response to sensory data is relatively crude and prone to false 
alarms. Reactive behavior is triggered that may be involuntary, for example, the startle 
reaction and physiological changes due to the release of noradrenalin. After the reaction 
response, it takes time for cognitive processes to catch up and make a more informed 
assessment of the situation and actual threat. If this emotive, reactive stimulation is excited 
in a chronic manner then susceptible individuals may become less effective, with impaired 
ability to think and plan clearly. Any kind of anxiety is a form of stress. Because individuals 
have a finite capacity for absorbing it, excessive stress results in fatigue. 
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2.5 Errors 

Ideally, military behavior is normative, that is, what is done is what should have been 
done. Human behavior does not always match the normative ideal of military behaviors. 
One of the most important aspects of human performance, which has often been overlooked 
in models of behavior and problem solving, is errors (although see, for example, Cacciabue, 
Decortis, Drozdowicz, Masson, & Nordvik, 1992; Freed & Remington, 2000; Freed, Shafto, 
& Remington, 1998). There is a consensus building about the definition of errors—for most 
people an error is something done that was not intended by the actor, that was not desired, 
and that placed the task/system beyond acceptable limits (e.g., Senders & Moray, 1991). 

Part of the reason for omitting errors from models of behavior is the fallacy that they are 
produced by some special error-generating mechanism that can be bolted on to models once 
they are producing correct behavior on the task at hand. Often, however, the actions that 
precede errors would have been judged to be correct if the circumstances had been slightly 
different. In other words, as Mach (1905/1976) observed, knowledge and error both stem 
from the same source. 

Evidence shows that novices and experienced personnel will often make the same errors 
when exposed to the same circumstances. The difference lies in the ability to notice and 
recover from these errors. Experienced personnel are more successful at mitigating errors 
before the full consequences arise. In other words, it is the management of errors that is 
important and needs to be trained (Frese & Altmann, 1989), rather than vainly trying to 
teach people how to prevent the inevitable. 

2.5.1 Training About Errors 

In any complex, dynamic environment, such as a military battlefield, the consequences 
of uncorrected errors are potentially disastrous. While normally a string of mistakes is 
required to create a disaster, the rapid pace of the battlefield and adversaries allows single 
mistakes to become more catastrophic. 

There is, therefore, a real need to learn how to manage errors in an environment in 
which the consequences are less severe. An advantage of using synthetic environments is 
that comparative novices can experiment in unfamiliar situations, with restrictions 
approximating the real environment in time, space, enemy capabilities, and so on, but with 
the knowledge that the consequences of any errors can be recovered. In addition, multiple 
scenarios can be played out over a compressed time period, thereby providing the novice 
with a variety of experiences that would take many years to accumulate through exposure to 
situations in the real world. This can be a great training aid, literally giving years of 
experience in far less time. When novices were trained in aircraft electrical-system 
troubleshooting using a simulated system, they were able to acquire years of experience in 
months because the tutor let them practice just their diagnostic skills without practicing their 
disassembly skills (Lesgold, Lajoie, Bunzon, & Eggan, 1992). 
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2.5.2 Models That Make Errors 

There are several process models complete enough to make errors, depending to some 
degree on the definition of error. Models that include errorful behavior exist in EPAM 
(Feigenbaum & Simon, 1984; Gobet & Simon, 2000), ACT-R (Anderson, Farrell, & Sauers, 
1984; Anderson & Lebiere, 1998; Lebiere, Anderson, & Reder, 1994) and Soar (Bass, 
Baxter, & Ritter, 1995; Howes & Young, 1996; Miller & Laird, 1996), although each 
generates errors in different ways and at different levels. Fewer models exist that model 
error recovery, although this is clearly the next aspect to model. 

A problem with models and humans is that the erroneous behavior is often task-specific; 
given a new task, both models and humans might not generate the same behavior. In other 
words, the erroneous behavior arises as a result of the combination of human, technological, 
and organizational (environmental) factors. Vicente (1998) delineates some of the problems 
in this area. 

There are various taxonomies of errors that could be incorporated into models of 
performance. There are also other constraints that reduce the level of performance that are 
worth exploring, including working memory (Young & Lewis, 1999), attention, and 
processing speed due to expertise. 

2.6 Adversarial Problem Solving 

Adversarial problem solving is different from simple problem solving and makes 
additional requirements for modeling behavior in synthetic environments. Planning is not 
done within a static environment, but done in an environment with active adversaries. 

Research on adversarial problem solving (e.g., Chase & Simon, 1973; de Groot 
1946/1978; Gobet & Simon, 2001; Newell & Simon, 1972) has identified several aspects of 
cognitive behavior that have been shown to generalize to other domains, including the 
military domain (Charness, 1992). A key result is that players do not follow a strategy such 
as minimax but that they satisfice (Simon, 1955), that is, they satisfy themselves with a 
good-enough solution, which can be far from the optimal solution (de Groot & Gobet, 1996; 
Gobet & Simon, 1996a). This satisficing behavior can be explained by the processing and 
capacity limits of human cognition, such as the time to learn a new chunk or the capacity of 
short-term memory (Newell & Simon, 1972). 

A second, related aspect is that a player's search is highly selective: only a few branches 
of the search tree are explored. The choice of subspace to search seems to be constrained by 
pattern-recognition mechanisms (Chase & Simon, 1973; Gobet, 1998; Gobet & Simon, 
1996a). A consequence is that misleading perceptual cues may result in the exploration of 
an incorrect subspace. For example, Saariluoma (1990) reported that chess masters found a 
suboptimal solution when the features of the position led them to look for a standard, 
although inferior, subspace. The consequence for understanding combatant behavior is that 
pattern recognition may influence the course of action chosen as much as the detail of the 
way the search is carried out. In fact, de Groot (1946/1978) did not find differences in the 
macrostructure of search of chess players at different skill levels. 

A third important result is that chess players re-investigate the same sequence of actions 
several times, interrupted or not by the analysis of other sets of actions. De Groot (1946) has 
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called this phenomenon progressive deepening. It is related to the selective search shown by 
experts in other areas (Charness, 1991; Ericsson & Kintsch, 1995; Gobet & Simon, 1996a; 
Hoffman, 1992). De Groot and Gobet (1996) propose that progressive deepening is due both 
to the limits of human cognition (limited capacity of short-term memory, slow encoding 
time in long-term memory) and that with this searching behavior, information gathered at 
various points of the search may be propagated to other points, including previously visited 
points (this could not be done with a search behavior such as minimox). 

These features of cognition, identified in adversarial problem solving, also occur in 
Rapid Decision Making (RDM) in domains such as firefighting, combat, and chess players 
in time-trouble. Interestingly, the model developed by Klein and his colleagues (see Klein, 
1997, for a review) singles out the same features as the model developed by Chase and 
Simon (1973) to explain expert chess-playing: pattern recognition, selective search, and 
satisficing behavior. 

While some aspects of adversarial problem solving are well understood, others have yet 
to be studied in any depth. Such aspects include the way the function used to evaluate the 
goodness of a state (the evaluation function) changes as a function of time, the link between 
the evaluation function and pattern recognition, or the learning of domain-specific 
heuristics, which all have direct implications for combat behavior. 

Relatively little research has been done on how players take advantage of the thinking 
particularities of their opponent, in particular, by trying to outguess him or her. Jansen 
(1992) offers interesting results. He has developed a computer program that takes advantage 
of some features and heuristics of human cognition in simple chess endgames, such as the 
tendency, in human players' search, to avoid moves that lead to positions with a high- 
branching factor, and to prefer moves that lead to forced replies. Using these features and 
incorporating them in its evaluation function, the program was able to win faster (in won 
positions) or to avoid defeat (in lost positions) more often against human players than by 
using a standard alpha-beta search. In principle, such an approach could be extended to 
include both skill-related and individual differences in synthetic environments. 

In comparison to perception and memory in games, relatively little computer modeling 
of human behavior has been done with adversarial problem solving (if one excludes pure 
Artificial Intelligence [AI] research, in which adversarial problem solving has been a 
favorite subject of research). One may mention the previous work of Simon and colleagues 
(Baylor & Simon, 1966; Newell, Shaw, & Simon, 1958), and the programs of Pitrat (1977), 
Wilkins (1980), and Gobet and Jansen (1994). All of these programs were created for chess 
and most cover only a subset of the game. 

There are implications of adversarial search variation for performance (i.e., how well a 
planner models an opponent). This would be a natural place to model various levels of 
experience in opponents. 

2.7 Variance in Behavior 

Including more variety in how a model performs a task is one of the next steps for 
improving the realism of synthetic forces. Currently, many models will execute a task the 
same way every time and for every equivalent agent. In the real world, this is not the case. 
The choice of strategies and the ordering of substrategies will vary across agents and vary 
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for a given agent across time. This lack of variance makes adversaries and allies too 
predictable in that they always do the same thing. 

Including variance in behavior is also necessary when behavior is less predictable. 
Novices, with less knowledge, have greater variance in behavior (Rauterberg, 1993). In the 
past, variance was intentionally suppressed in simulations because it was thought that 
variance in real behavior was suppressed through doctrine and training. Accounting for 
variety in behavior is of increasing importance when modeling less-prepared and less- 
trained forces, and now for improving model accuracy as variance in real behavior 
is admitted. 

Variance in behavior is also important when modeling non-combatant agents, such as 
white forces and civilians. These agents may be producing their behaviors deterministically, 
but the determiners are often hidden from other agents, making them appear relatively 
unpredictable. Finally, the ability to model a variety of behaviors is necessary for 
sensitivity analysis. 

Variance will arise out of several factors. It may arise from different levels of expertise, 
which is covered above. It may arise from different strategies, which will require including 
multiple strategies and noting where orders are less likely to be followed and when panic 
results in orders being ignored. Variance may also arise as a type of error, such as applying 
a right action in the wrong circumstances. 

In any case, variance in agent behavior in synthetic environments particularly needs to 
be included in training materials. Humans are very good pattern-recognizers—although they 
do not always look for or know the right pattern—and will take advantage of models that do 
not vary their behavior. The real opponents may not be so predictable. 

2.8 Information Overload 

Problems with information overload have been noted numerous times (e.g., Woods, 
Patterson, Roth, & Christoffersen, 1999). Hoffman and Shadbolt (1996) provide a review of 
work on information overload in real-time, high-workload military contexts. They also 
discuss challenges that information overload raises for knowledge acquisition in the context 
of synthetic forces environments. 

Problems resolving clutter, workload bottlenecks, and finding significance in incoming 
data, are not yet problems for many models of human performance. Currently, most 
cognitive and synthetic force models do not face information overload. The situation has 
more typically been of a model seeing only a limited set of information and knowing how to 
perform only one or a few tasks. 

In the near future, the models will have more complex simulated eyes as well as more 
knowledge to interpret the eyes' input. This will lead to more incoming information with a 
more difficult problem of deciding which objective to pursue next and how to choose the 
best strategy based on a larger set of knowledge and perceptual inputs. We will also find 
that models will start to have trouble with information overload, clutter, and situation 
assessment. Their tactics in this area will be particularly important when there are time 
pressures, which are common in synthetic environments and the worlds they model. 
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CHAPTER 3 

Current Objective: Better Integration 

There are theoretical and practical problems integrating models with simulations and 
with other models. The problems can appear to be simply software issues, but deeper 
theoretical issues often go hand-in-hand with these problems. We thus note a few of these 
problems in getting models to interact with simulations as well the basic problem of 
aggregating models. 

3.1 Perception 

At least since de Groot's early work (1946), perception has been deemed to play an 
essential role in cognition. Neisser (1976, p. 9) aptly summarizes it as "perception is where 
cognition and reality meet." This point of view has been buttressed in recent years with the 
emphasis given by Nouvelle AI (e.g., Brooks, 1992), which is based on reactive 
architectures, perceptual mechanisms, and on their coupling with motor behavior. 
Neuroscience (e.g., Kosslyn & Koenig, 1992) teaches that, due to evolutionary pressure, a 
large part of the brain deals with perception (mainly vision); hence, an understanding of 
perception is essential for understanding the behavior of combatants. 

Perception-based behavior offers a series of advantages: it is fast, attuned to the 
environment, and optimized with respect to its coupling with motor behavior. However, its 
disadvantages include its tendency to be stereotyped and to lack generalization. In addition, 
from the point of view of the modeler, it is a difficult behavior to simulate well. This is in 
part due to the fact that low-level perception is still poorly understood (Kosslyn & Koenig, 
1992), although recent progress in robotics and agent behavior give examples of successful 
implementation of basic perceptual mechanisms for use by cognition (e.g., Brooks, 1992; 
Zettlemoyer & St. Amant, 1999; and St. Amant & Riedl, 2001). 

Perception may be seen as the common ground where various aspects of cognition meet, 
including motor behavior, concept formation and categorization, problem solving, memory, 
and emotions. In several of these domains, computer simulations illustrating the role of 
perception have been developed. 

Brooks (1992) and others have investigated the role of perception in motor behavior 
with simple insect-like robots. The link between concept formation and (high-level) 
perception has been studied using the EPAM architecture (Gobet, Richman, Staszewski, & 
Simon, 1997). The role of perception in problem solving has been studied using Chunk 
Hierarchy and REtrieval Structures (CHREST), a variation of EPAM (Gobet, 1997; Gobet 
& Jansen, 1994) that also accounts for multiple memory regularities. Eye movements are 
simulated in detail in CHREST but not the low-level aspect of perception. (We will deal 
with the relation between problem solving and perception in Sec. 3.2.) 
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A more detailed simulation of low-level aspects of perception, such as feature 
extraction, is an important goal for the future of research on the relation of perception to 
other aspects of cognition. In addition, little work has been done on modeling perception in 
dynamically changing environments and on the effects of stress, emotion, motivation, and 
group factors on perception. 

It is useful to separate perception from cognition in modeling human performance. The 
border between the model of the person and their environment can (arguably) be drawn at 
the boundary between cognition and perception, with perception belonging to a large extent 
in the environment model. This may be true for psychological reasons (Pylyshyn, 1999). It 
is also true to support tying models to simulations and for use of the resulting knowledge by 
cognition in problem solving (Ritter, Baxter, Jones, & Young, 2000). The typical acts 
performed by perception and motor action, such as determining the objects in view, their 
shapes and sizes, and then manipulating them, are most easily performed where the objects 
reside. This forces the implementation of theories of interaction into the simulation language 
instead of the modeling language. 

It would be useful to have realistic stochastic distributions of differences in perception 
among individual agents, and also the ability to augment perception with instruments from 
field glasses to night sights. These devices could be modeled as plug-ins to the perception 
model. Models of perception in synthetic environments are typically simple, being a 
function of distance from observer to object (e.g., if there is a clear line of sight and the 
absence of cover and smoke). On the other hand, human vision changes in important ways 
with the ambient level of light and with the part of the retina on which an image falls. The 
edges of the retina are particularly sensitive to the detection of a moving object, while the 
fovea has the best resolution for identifying distant objects and is most sensitive to color. 
The distance at which an object can be seen depends on its brightness, its size, and its 
contrast to the background as well as the permeability of the air to light. Thus, a detonation 
will be visible from a much greater range than a moving tank, which in turn will be much 
easier to spot than a motionless, camouflaged soldier. 

Situation awareness is a term that is still the subject of much debate in the human 
factors and ergonomics communities (e.g., see the Special Issue of Human Factors, Volume 
37, Issue 1). Pew and Mavor (1998) consider situation awareness to be a key concept in the 
understanding of military behavior. We agree, but also believe that situation awareness 
should be modeled at a finer level of detail than is currently often done (see Pew & Mavor, 
1998, chap. 7, for a current review). 

3.2 Combining Perception and Problem Solving 

Pew and Mavor (1998) note that an important constraint on problem solving is 
perception, but do not explore this in detail. As mentioned in our discussion on expertise, 
perception plays an important role in skilled behavior—experts sometimes literally see the 
solution to a problem (de Groot, 1946/1978). 

We may use Kosslyn and Koenig's (1992) definition: higher-level visual processing 
involves using previously stored information; lower-level visual processing does not involve 
such stored information and is driven only by the information impinging on the retina. We 
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focus here on higher-level perception and, thus, we will not consider mechanisms used for 
finding edges, computing depth, and so on. 

Neisser's Cognition and Reality (1976) describes what is often referred to as the 
perceptual cycle. This approach underpins a vast amount of the cognitive engineering 
literature and research. At its simplest, the perceptual cycle is a cycle between the 
exploration of reality and representing this reality as schemas (in the general sense). 
Schemas direct exploration (perceptual, haptic, etc.) that involves sampling the object 
(looking at the real world), which may alter the object, which means that the schemas have 
to be modified. (See Neisser, 1976, p. 21, or p. 112 for a more complete description.) This 
work suggests that an important aspect of behavior has been missing from many theories 
and models of problem solving that have not included perception. 

It is natural that researchers have attempted in recent years to combine perception and 
problem solving in artificial systems. One can single out three main approaches: robotics, 
problem-solving architectures incorporating perception, and perceptual architectures being 
extended to problem solving. 

In robotics, Nouvelle AI has attempted to build robots able to carry simple problem- 
solving behavior without explicit planning by linking sensor and motor abilities tightly (e.g., 
the behavior-based architecture of Brooks, 1992). Robots based on this approach are 
excellent at obstacle-avoiding behavior. It is, however, unclear how far this approach can be 
extended to more complex problem solving without incorporating some sort of planning. 

Including perception in behavioral models is a useful way to add natural competencies 
and limitations to behavior. Pew and Mavor note that there are few models of how 
perception influences problem solving. Their summary can be extended and revised in this 
area, however. We have seen in existing cognitive models (Byrne, 2001; Chong, 2001; de 
Groot & Gobet, 1996; Gobet, 1997; Jones, Ritter, & Wood, 2000; Ritter & Bibby, 2001; 
Salvucci, 2001) and in AI models (Elliman, 1989; Grimes, Picton, & Elliman, 1996; St. 
Amant & Riedl, 2001) that perception is linked to and can provide behavioral competencies 
and restrictions on problem solving. While Pew and Mavor note that they are unaware of 
any attempt in Soar to model the detailed visual perceptual processes in instrument scanning 
(Pew & Mavor, 1998, p. 181), such models exist (Aasman, 1995; Aasman & Michon, 1992; 
Bass et al., 1995), and some are even cited by Pew and Mavor (1998, p. 95) for 
other reasons. 

The Soar model reported by Bass et al. (1995) scans a simple air-traffic control display 
to find wind velocity. The model learns (chunks) this information and uses it and the display 
to track and land a plane through airport air traffic control. The model then reflects on what 
it did to consider a better course of action. This model shows tentative steps towards using 
Soar's learning mechanism for situation learning and assessment based on information 
acquired through active perception (see Pew & Mavor, 1998, p. 197). Modeling visual 
cognition within Soar is ongoing at the University of Southern California's Information 
Sciences Institute (USC/ISI; Hill, 1999) and at the Pennsylvania State University. 

The EPAM architecture (Feigenbaum & Simon, 1984), the initial goal of which was to 
model memory and perception, has recently been extended into a running production system 
(Gobet & Jansen, 1994; Lane, Cheng, & Gobet, 1999). The chunks learned while interacting 
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with the task environment can later be used as conditions of productions. The same chunks 
are also used for the creation of schemas and for directing eye movements. 

Recently, there have been several attempts to move the perception component from 
models into the architectures, regularizing and generalizing the results in the process. 
Prominent cognitive architectures Soar and ACT-R have been extended to incorporate 
perceptual modules, and PSI also has a perceptual module. With Soar, a perceptual module 
is available based on EPIC (Chong & Laird, 1997) and another based loosely on a spotlight 
theory of attention (Ritter et al., 2000). With ACT-R, two perceptual modules have been 
developed independently, the Nottingham architecture (Ritter et al., 2000) and ACT-R/PM 
(based on but also extending EPIC; Byrne, 1997, 2001). This approach creates situated 
models of cognition, that is, models that interact with (simulations of) the real world. 

None of these approaches has been tested with complex, natural, and dynamically 
changing environments. The robotics approach is the only one currently demonstrated to 
cope with natural, albeit rather simple, environments. The two other approaches can interact 
with computer interfaces that are complex and dynamic (e.g., Salvucci, 2001). 

3.3 Integration of Psychology Theories 

A glance at almost any psychology textbook reveals that the study of human cognition 
is conventionally divided into topics that are presented as if they have little to do with each 
other. There will be separate chapters on attention, memory, problem solving, and so on. 
However, the range and variety of tasks undertaken by people at work, and also those 
tackled by synthetic agents, typically require the application and interplay of many different 
aspects of cognition simultaneously or in close succession. Interacting with a piece of 
electronic equipment, for example, can draw upon an agent's capacity for perception, 
memory, learning, problem solving, motor control, decision making, and many more 
capabilities. The question of how to integrate these different facets of cognition is therefore 
an important one for the simulation of human behavior. 

Integrating theories across different topics of cognition is an issue that has rarely been 
addressed directly and provides an important focus for future work. Agents in synthetic 
environments (e.g., R. Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999) implicitly 
integrate multiple aspects of behavior. What research exists has been carried out, 
appropriately enough, under the heading of unified theories of cognition using architectures 
such as Soar and ACT-R. Soar offers a promising basis for such integration. Its impasse- 
driven organization enables it to access different areas of cognitive skill as the need arises, 
and its learning mechanism (which depends on cognitive processing in those impasses) 
enables relevant information from the different areas to be integrated into directly applicable 
knowledge for future use. ACT-R also integrates multiple components. 

3.4 Integration and Reusability of Models 

Integration of theories can be also viewed as integration of models as software, 
sometimes called reuse. It has been true for years that reuse is important; this is true for two 
fundamental reasons. First, reuse saves effort. In the field of object-oriented software 
development, figures are often quoted for the costs associated with development with reuse 
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in mind. The extra time spent in initial development is something like 20%. When the code 
is reused, an application can be created in 40% of the development time for new code. 
Second, and perhaps more importantly in these domains, reuse ensures consistency across 
simulations and time, particularly important when creating unified theories of cognition. 

There are also serious problems restricting the reuse of cognitive models. Cognitive 
models are not generally reused, even when they have been created in a cognitive 
architecture designed to facilitate their reuse. There are exceptions. Pearson's Version 2 of 
his Symbolic Concept Acquisition model and its explanatory displays is an exception 
(available at ai.eecs.umich.edu/soar/soar-group.html). Other exceptions include PDP toolkits 
such as O'Reilly's PDP++ (www.cnbc.cmu.edu/PDP++/PDP++.html). But, overall, 
cognitive modeling does not have the level of system reuse and visual displays that the AI 
and expert systems communities now take for granted. This problem is being noticed by 
others as well (Wray, 2001). 

There are some examples of reuse that should be emulated and expanded. ACT-R now 
maintains a library of existing models (act.psy.cmu.edu). We have found that the mere 
existence of a library of student models (www.nottingham.ac.uk/pub/soar/nottingham/) has 
led to increasingly better student projects. Work by Young (1999) on building a zoo of 
runnable cognitive models is another example of such use done broadly. There is little 
reason to believe that these results would not scale up. These improvements to the modeling 
environment have helped move learning Soar (Ritter & Young, 1999) and ACT-R 
(Anderson & Lebiere, 1998) from being a lengthy apprenticeship to being something that 
can be taught in undergraduate courses. 

Such integration is illustrated most clearly in a model of natural language sentence 
processing (Lewis, 1993), in which lexical, syntactic, semantic, pragmatic, and domain- 
specific knowledge are brought together in learned rules (Soar chunks) to guide language 
comprehension. Probably the model that has gone furthest in demonstrating this kind of 
integration is the cognitive model of the NASA Test Director, the person responsible for 
coordinating the preparation and launch of the space shuttle. Nelson, Lehman, and John 
(1994) describe a Soar model of a fragment of the Test Director's performance, which 
incorporates problem solving, listening to audio communications, understanding language, 
speaking, visual scanning (through a procedure manual), page turning, and more. Such 
integrated models are also starting to be created in ACT-R (Anderson & Lebiere, 1998). 

Integration of a slightly different flavor—across capabilities rather than across textbook- 
like topics of cognition—is illustrated in another Soar model, this one being of exploratory 
learning of an interactive device (Rieman et al., 1996). At first glance, it might seem that 
exploratory learning is not especially relevant to the human behavior that is, apart from 
questions of training, the main focus of this report. Fighter pilots and tank commanders are 
highly trained and expert individuals, and presumably do not learn significantly from further 
experiences. However, component skills such as comprehending a novel situation, looking 
around to discover relevant options, and assessing a course of action—which are 
fundamental components of expert skill—are also precisely what are required for 
exploratory learning and reactive planning in uncertain environments. 

Rieman et al. (1996) describe the rDXL model, which models an experienced computer- 
user employing exploratory learning to discover how to perform specified tasks with an 
unfamiliar software application. IDXL searches both the external space provided by the 
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software and the internal space of potentially relevant knowledge. It seeks to comprehend 
what it finds and approximates the rationally optimal strategy (Anderson, 1990) for 
exploratory search. A typical sequence of interrelated capabilities would be for the model 
first to learn how to start a spreadsheet program from external instruction; then to use that 
new knowledge as a basis for analogy to discover how to start a graph-drawing package; 
and then to build on its knowledge by learning through exploration how to draw a graph. 
The model works with a limited working memory, employs recognition-based problem 
solving (Howes, 1993), and acquires display-based skill (Payne, 1991) in an interactive, 
situated task. 

These problems of reusability are even more acute when creating models for synthetic 
environments because of the size and type of models. This is true for several reasons: the 
knowledge is more extensive and exact than many laboratory domains previously studied. 
The models must interact with complex, interactive simulations. The work may be 
classified, which will add an additional constraint in hiring someone with multiple skills. 
Scenarios may simulate hours of behavior rather than the minutes of typically modeled 
laboratory tasks. This represents a lot of knowledge, and the timeframe can make 
troubleshooting more difficult. Finally, there are many cases where an explanation facility is 
required to explain the model's behavior for other observers. 

3.5 Summary 

A framework to assist with integration and reuse will have to be developed. It should be 
common in the sense that the appropriate simulation entities and analysis tools would be 
available, and for a given application or analysis, developers would plug them together. The 
DIS protocol and ModSAF are being used in this way to some extent, but they are hard to 
use and do not support the desired level of ease of use nor the level of cognitive realism. 
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Current Objective: Improved Usability 

In addition to improving the match of synthetic forces to human behavior itself, there 
are several aspects of these models that must be improved so they can be developed, tested, 
and used by modelers and analysts. A large amount of time is often required to build models 
and understand their behavior, more than we believe should be necessary. The difficulties of 
simply creating and manipulating models of behavior can preclude us from spending more 
time developing and testing models, and using these models in training or for performing 
"what-if' analyses. 

While Pew and Mavor (1998, p. 10) initially note that their report will not address 
usability, they later (p. 282) note the need to have quickly reconfigurable models. They also 
discuss (p. 292) ease of use. This revision is completely appropriate because usability is 
important. Models that are too difficult to be used are not used. This issue is also being 
taken up in the next generation of simulation models in the United States (Ceranowicz, 
1998). 

4.1 Usability of the Models 

As we have noted before (Ritter, Jones, & Baxter, 1998b; Ritter & Larkin, 1994), 
cognitive models suffer from usability problems. Few lessons from the field of Human- 
Computer Interaction (HCI) have been re-applied to increase the understanding of the 
models themselves, even though many results and techniques in HCI have been discovered 
using cognitive modeling. 

Modelers have to interact with the model several times and in several ways over the 
lifetime of the model. As a first step, the models must be easy to create. As part of the 
creation and validation process, the models must be debugged on the syntactic level (will it 
run?), on the knowledge level (does it perform the task?), and on a behavioral level (does it 
perform the task like a human?). All of these levels are important if the costs of acquiring 
behaviors are to be reduced. While we can point to some recent advances in usability 
(Anderson & Lebiere, 1998; Jones, 1999b; Kalus & Hirst, 1999; Ritter et al., 1998b), further 
work will be required. 

It is also probably fair to say that cognitive models can often be difficult to explain and 
understand. This problem has been noted as a result in a recent Air Force model comparison 
exercise, AMBR, covered in more detail in Section 6.2.7 (Gluck & Pew, 2001a). The 
difficulty in understanding a model's behavior is partially due to their complexity, but it is 
compounded at times by the difficulty of their interfaces not supporting the models in a 
structured way, not displaying the model's state, and not supporting exploration of the 
model's state. In many cases this is not intentional, but arises out of the modeling languages 
youth as programming languages, and that support for usability takes time away from 
applications and modeling itself. 
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4.2 Desired Accuracy of the Models 

Another problem is knowing when to stop improving the model. In science for science's 
sake, there is no limit—the model is continually improved. In the case of engineering-like 
applications, such as behavioral models in synthetic environments, knowing when to stop is 
a valid question. In many cases we do not know how accurate these models have to be in 
order to be useful and at what point additional accuracy is no longer worthwhile. For 
example, does having an emotional, simulated opponent lead to better or worse training? 

The purpose and goals of each modeling project will help determine when to stop 
development, so they need to be carefully laid out when developing a model of behavior. 
The stopping rule also applies to the synthetic environment as well as the model—there is 
no point in developing a simulation that is too detailed. This question is becoming more 
important as the models become more accurate and modifiable. 

4.3 Aggregation and Disaggregation of Behaviors 

A clear requirement for simulations in synthetic environments is the ability to aggregate 
or summarize subunits and, in other situations, the ability to disaggregate and place the 
subunits from a larger grouping. When the tanks in a platoon are each simulated in a 
platform-level simulation, they must be aggregated to display them as a platoon on a more 
abstract or larger-scale map. Similarly, higher-level units may have to be placed into a 
simulation when moving a larger unit into a platform-level simulation. This aggregation (or 
disaggregation) may need to occur multiple times when crossing levels of resolution to 
provide the right level for a report. 

This area has received a limited amount of study, yet it is a common need across 
multiple types of simulations. None of the cognitive architectures examined in Pew and 
Mavor (1998, Table 3.1) or here offer any insight. We can only note that several of the 
architectures (e.g., COGNET, Soar) are designed to support multiple agents. 

4.4 Summary 

Environments for interacting with existing modeling architectures are generally poorer 
than those now provided for most programming languages. The requirements for modeling 
are greater than general programming, including the need for adjustable accuracy, different 
levels of analyses, and multiple measurements from running programs. These factors 
contribute to making modeling difficult. We need new models and new techniques for 
building and using models. 
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Recent Developments for Modeling 

In addition to the architectures and approaches identified by Pew and Mavor (1998), 
there are a few other architectures that are worth examining. In this chapter we note them, 
including the lessons they provide. Our reviews also explicitly consider ease of use 
(i.e., model populating). 

We focus our comments on cognitive architectures because they have been created for 
modeling the strengths and limitations of human behavior. Any system built for other 
reasons that was adapted in this way—for example, other AI systems—would start to 
approach these systems in capabilities and limitations. It is quite likely that the cognitive 
architecture that best matches human behavior will vary by the type of behavior and level of 
aggregation. For example, different architectures will be preferred for modeling a soldier 
performing simple physical tasks than for a deliberate and reflective commander. 

There will continue to be a range of architectures created. We agree completely with 
Pew and Mavor (pp. 110-111) that further work is necessary before settling on an 
architecture. That is not to say that architectures will not continue to converge (e.g., Soar 
and EPIC, Chong, 2001, and Soar and ACT-R, Jones, 1998). We start, however, by 
examining ways to summarize data and some advanced AI techniques to help create models. 
We then examine several architectures. 

5.1 Data Gathering and Analysis Techniques 

Scattered throughout Pew and Mavor (e.g., pp. 323-325) are comments about the need 
for data to develop and test models. Data to develop models can come from a wide variety 
of sources. Data can come from speaking to experts and having them do tasks off-line, so- 
called knowledge acquisition (Chipman & Meyrowitz, 1993; Schraagen, Chipman, & 
Shalin, 2000; Shadbolt & Burton, 1995). Data can also come from having experts talk aloud 
while performing the task (Ericsson & Simon, 1993). Talking aloud is a more accurate way 
to acquire the knowledge because it is based on actual behavior rather then someone's 
impression and memory of behavior. It is, however, a more costly approach because the 
modeler must infer the behavior generators. Data for developing models can also come from 
non-verbal measurements of experts while they perform the task. Non-verbal measurements 
are probably the least useful data (but still useful in some circumstances) for developing 
models. These data are useful, however, in testing models that make timing predictions. 
Data can also come from previously run studies, reviews, and compendia of such studies 
(e.g., Boff & Lincoln, 1988 SeKular & Blake, 1994). A useful review of data types and 
analysis methods in this area is provided by Hoffman (1987). 

A major requirement will be a balance between the experimental control of the lab and 
the richness of the real world. An appropriate balance can sometimes be achieved by 
gathering data in the same micro-world simulations in which the models will be deployed, 
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such as synthetic environments. These environments can be used to model all the salient 
aspects of the real world, while still providing some level of experimental control. 

Once the data are in hand, they will often have to be aggregated or summarized. Expert 
summaries from knowledge acquisition already represent summarized data, but the field of 
verbal protocol analysis has developed a wide range of techniques for summarizing such 
data. 

Reviews and suggestions in this area are available (Ericsson & Simon, 1993; Sanderson 
& Fisher, 1994), but there exists a very wide range of techniques that vary based on how 
advanced the theory is, the purposes of the research, and the domain. Survival analysis is 
one example of an advanced technique to examine protocol data for temporal patterns for 
later inclusion and comparison against model behavior (Kuk, Arnold, & Ritter, 1999). 

With data in hand, the next step is either to develop a model or to test an existing model. 
There is little formal methodology about how to create models. Some textbooks attempt to 
teach this creative task either directly (vanSomeren, Barnard, & Sandberg, 1994) or by 
example (McClelland & Rumelhart, 1988; Newell & Simon, 1972). There are summaries of 
the testing process (Ritter & Larkin, 1994) and of some possible tests (Ritter, 1993a). 
Tenney and Spector (2001); and Ritter and Bibby (2001) provide particularly useful 
example sets of comparisons. Repairing a model based on the results of the tests can be a 
task requiring a lot of creativity. 

5.2 Advanced Al Approaches 

There are some existing AI tools that could be used to create, augment, or optimize 
models of performance. We note here three tools with which we are particularly familiar. 
These include approaches for creating behaviors, such as genetic algorithms and traditional 
Al-planning programs. 

5.2.1 Genetic Algorithms 

Genetic Algorithms (GAs) are search methods that can be used in domains in which no 
heuristic knowledge is available and an objective function exhibits high levels of 
incoherence (Goldberg, 1989). That is to say, a small change to the solution state may often 
result in large changes to the objective function or fitness measure. These algorithms are 
expensive in machine resources and exhibit slow (but often steady) convergence to a 
solution. They might be used as a search strategy of last resort for plan formation. 

GAs are a family of algorithms loosely based on Darwinian evolution. They optimize 
functions without assuming that the search space will be linear. They start with a 
population of templates for possible solutions (analogous to sets of chromosomes), and 
evaluate them to determine how well they perform (fitness). After the fitness values are 
computed, a new population is created. A variety of methods have been used to create the 
next generation, but in each case the underlying principle has been to include copies of the 
chromosomes proportional to their fitness, and at each generation to create new 
combinations by combining two parents' chromosomes. The cycles of evaluation and 
creation are then repeated. 
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Heuristics can be used with GAs to seed the initial population in a non-random way or 
to guide the crossover process in a way that changes the distribution of offspring. Using 
heuristics results in a memetic algorithm (one that manipulates basic blocks of information 
or memes). As has been common experience throughout the history of AI, this introduction 
of domain knowledge can drastically transform the performance of the GA. Such algorithms 
have been found to exceed the performance of previous approaches in a number of domains 
(Burke, Elliman, & Weare, 1995). There may be reason for using GAs as a search strategy 
in planning. 

5.2.2 Tabu Search 

Tabu search, as developed by Glover (Glover & Laguna, 1998), is a general purpose 
approach remarkably effective for difficult problems where the objective function has some 
local coherence. It is surprising how often hill-climbing approaches such as the A* 
algorithm are used in current plan-building algorithms, despite the domains being prone to 
local maxima. Tabu search uses the novel concept of recency memory to prevent moves in a 
solution space from being tried when some component of that state has recently been 
changed in a previous move. This surprisingly simple idea forces the search away from a 
local maximum. Long-term memory is used to hold the best solution state found so far and 
this knowledge may be used to restart the search far away from any previous exploration of 
the state space. 

The Tabu search approach would almost certainly lead to improved solutions with 
reasonable computational complexity. It would be worth using this approach to search for 
strategies and plans at various levels in a synthetic environment from the individual 
combatant to the highest level source of command and control. 

Soar is impressive in its ability to reuse parts of problems that have been solved in the 
past and to plan in a goal-directed way that can seem ingenious. Real human problem 
solving can be less structured, however, and can leap from one approach to another in a 
manner that is difficult to model. Tabu search has this characteristic, however, as part of its 
diversification strategy. Including Tabu search in a cognitive architecture would be 
interesting. There may be some advantages to be gained by grafting on other similar systems 
that modify the beliefs of a cognitive architecture so as to maintain various types of logical 
consistency in the set of facts held. 

5.2.3 Multiple Criteria Heuristic Search1 

Heuristic search, one of the classic techniques in AI, has been applied to a wide range of 
problem-solving tasks including puzzles, two-player games, and path-finding problems. A 
key assumption of all problem-solving approaches based on utility theory, including 
heuristic search, is that we can assign a single utility or cost to each state. This, in turn, 
requires that all criteria of interest can be reduced to a common ratio scale. 

This section was drafted by Brian Logan and revised by the authors. 
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The route-planning problem has conventionally been formulated as one of finding a 
minimum-cost (or low-cost) route between two locations in a digitized map, where the cost 
of a route is an indication of its quality (e.g., Campbell, Hull, Root, & Jackson, 1995). In 
this approach, planning is regarded as a search problem in a space of partial plans, allowing 
many of the classic search algorithms such as A* (Hart, Nilsson, & Raphael, 1968) or 
variants such as A*epsilon (Pearl, 1982) to be applied. However, while such planners are 
complete and optimal (or optimal to some bound e), formulating the route-planning task in 
terms of minimizing a single criterion is difficult. 

For example, consider the problem of planning a route in a complex terrain of hills, 
valleys, impassable areas, and so on. A number of factors will be important in evaluating the 
quality of a plan: the length of the route, the maximum negotiable gradient, the degree of 
visibility, and so on. In any particular problem, some of these criteria will affect the 
feasibility of the route, while others are simply preferences. Route planning is an example of 
a wide class of multi-criteria, problem-solving tasks, where different criteria must be traded 
off to obtain an acceptable solution. 

One way of incorporating multiple criteria into the problem-solving process is to define 
a cost function for each criterion and use, for example, a weighted sum of these functions as 
the function to be minimized. We can, for example, define a visibility cost for being exposed 
and combine this cost with cost functions for the time and energy required to execute the 
plan to form a composite function that can be used to evaluate alternative plans. However, 
the relationship between the weights and the solutions produced is complex in reality, and it 
is often unclear how the different cost functions should be combined linearly as a weighted 
sum to give the desired behavior across all magnitude ranges for the costs. This makes it 
hard to specify what kinds of solutions a problem-solver should produce and hard to predict 
what a problem solver will do in any given situation; small changes in the weight of one 
criterion can result in large changes in the resulting solutions. Changing the cost function on 
a single criterion to improve the behavior related to that criterion often leads to changing all 
the weights for all the other costs as well because the costs are not independent. Moreover, 
if different criteria are more or less important in different situations, we need to find sets of 
weights for each situation. 

The desirability of trade-offs between criteria is context-dependent. In general, the 
properties that determine the quality of a solution are incommensurable. For example, the 
criteria may only be ordered (on an ordinal scale), with those criteria that determine the 
feasibility of a solution being greatly preferred to those properties that are merely desirable. 
It is difficult to see how to convert such problems into a multi-criterion optimization 
problem without making ad hoc assumptions. It is also far from clear that human behavior 
solely optimizes on a single criterion. 

Rather than attempt to design a weighted-sum cost function, it is often more natural to 
formulate such problems in terms of a set of constraints that a solution should satisfy. We 
allow constraints to be prioritized, that is, it is more important to satisfy some constraints 
than others, and soft, that is, constraints are not absolute and can be satisfied to a greater or 
lesser degree. Such a framework is more general in admitting both optimization problems 
(e.g., minimization constraints) and satisficing problems (e.g., upper-bound constraints), 
which cannot be modeled by simply minimizing weighted-sum cost functions. Vicente 
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(1998) suggests ways in which such constraints can be analyzed as part of a work 
domain analysis. 

This approach to working with constraints provides a way for more clearly specifying 
problem-solving tasks and more precisely evaluating the resulting solutions. There is a 
straightforward correspondence between the real problem and the constraints passed to the 
problem-solver. A solution can be characterized as satisfying some constraints (to a greater 
or lesser degree) and only partially satisfying or not satisfying others. By annotating 
solutions with the constraints they satisfy, the implications of adopting or executing the 
current best solution are immediately apparent. The annotations also facilitate the 
integration of the problem-solver into the architecture of an agent or a decision-support 
system (see for example, Logan & Sloman, 1998). If a satisfactory solution cannot be found, 
the degree to which the various constraints are satisfied or violated by the best solution 
found so far can be used to decide whether to change the order of the constraints, relax one 
or more constraints, or even redefine the goal, before making another attempt to solve 
the problem. 

The ordering of constraints blurs the conventional distinction between absolute 
constraints and preference constraints. All constraints are preferences that the problem- 
solver will try to satisfy, trading off slack on a more important constraint to satisfy another, 
less important constraint. 

The A* search algorithm is ill-suited to dealing with problems formulated in terms of 
constraints. Researchers at Birmingham have therefore developed a generalization of A* 
called A* with Bounded Costs (ABC; Alechina & Logan, 1998; Logan & Alechina, 1998), 
which searches for a solution that best satisfies a set of prioritized soft constraints. 

The utility of this approach and the feasibility of the ABC algorithm have been 
illustrated by an implemented route planner that is capable of planning routes in complex 
terrain satisfying a variety of constraints. This work was originally motivated by difficulties 
in applying classical search techniques to agent-route planning problems. However, the 
problems identified with utility-based approaches, and the proposed solutions, are equally 
applicable to other search problems. 

5.3 Psychologically Inspired Architectures 

We review here several psychologically inspired cognitive architectures that were not 
covered by Pew and Mavor (1998). These architectures are interesting because (1) they are 
psychologically plausible, (2) some of them provide examples of how emotions and 
behavioral moderators can be included, and (3) several illustrate that better interfaces for 
creating cognitive models are possible. 

5.3.1 Elementary Perceiver and Memoriser 

The Elementary Perceiver And Memoriser (HPAM) is a well-known computer model of 
a wide and growing range of memory tasks. The basic ideas behind EPAM include 
mechanisms for encoding chunks of information into long-term memory by constructing a 
discrimination network. The EPAM model has been used to simulate a variety of 
psychological regularities, including the learning of verbal material (Feigenbaum & Simon, 

Human Systems IAC SOAR, 2003 31 



Modeling Human Performance 

1962, 1984) and expert digit-span memory (Richman, Staszewski, & Simon, 1995). EPAM 
has been expanded to use visuo-spatial information (Simon & Gilmartin, 1973). 

EPAM organizes memory into a collection of chunks, where each chunk is a meaningful 
group of basic elements. For example, in chess, the basic elements are the pieces and their 
locations; the chunks are collections of pieces, such as a king-side pawn formation. These 
chunks are developed through the processes of discrimination and familiarization. 
Essentially, each node of the network holds a chunk of information about an object in the 
world. The nodes are interconnected by links into a network with each link representing the 
result of applying a test to the object. When trying to recognize an object, the tests are 
applied beginning from the root node, and the links are followed until no further test can be 
applied. When a node is reached, if the stored chunk matches that of the object then 
familiarization occurs. The chunk's resolution is then increased by adding more details of 
the features in that object. If the current object and the chunk at the node reached differ in 
some feature, then discrimination occurs, which adds a new node and a new link based on 
the mismatched feature. Therefore, with discrimination, new nodes are added to the 
discrimination network; with familiarization, the resolution of chunks at those nodes 
is increased. 

The Chunk Hierarachy and REtrieval STructures (CHREST; de Groot & Gobet, 1996; 
Gobet & Simon, 1996b) is one of the most current theories of memory developed from the 
ideas in EPAM. Gobet and Simon (2000) present a detailed description of the present 
version of CHREST and report simulations on the role of presentation time in the recall of 
game and random chess positions. As in the earlier chunking theory of Chase and Simon 
(1973), CHREST assumes that chess experts develop a large EPAM-like net of chunks 
during their practice and study of the game. In addition, CHREST assumes that some 
chunks, which recur often during learning, develop into more complex retrieval structures 
(templates) with slots for variables that allow a rapid encoding of chunks or pieces. 

EPAM and its implementations are important to consider because they fit a subset of 
regularities in memory very well. This at least serves as an example for other theories and 
architectures to emulate. It may also be possible to include the essentials of EPAM in 
another system, such as Soar or ACT-R, extending the scope of both approaches. 

5.3.2 Neural Networks 

Pew and Mavor (1998, chap. 3) review neural networks. Here, therefore, we only 
provide some further commentary, introduce some more advanced concepts, and note a few 
further applications. 

Connectionist systems have demonstrated the ability to learn arbitrary mappings. 
Architectures such as the Multi-Layer Perceptron (MLP) are capable of being used as a 
black box that can learn to recognize a pattern of inputs as a particular situation. This 
requires supervised training and may involve heavy computational resources to arrive at a 
successful solution using the back-propagation algorithm. Training can be continued during 
performance as a background task, and thus, an entity could have an ability to learn during 
action based on this approach. Recognition performance is relatively rapid and a multi-layer 
perceptron might be used to model a reaction mechanism in which a combatant responds to 
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coming under fire, or spotting the presence of the enemy, Tor example. It might also be used 
to activate particular aspects of military doctrine depending on the current circumstances. 

Recurrent nets such as the Elman (1991) net have the ability to generate sequences of 
tokens as output. These seem to offer some promise of detecting an input situation and 
producing a series of behavioral actions as a response. This behavior of recurrent nets may 
be useful for modeling the reactive behavior of an entity over a short time period, while a 
symbolic cognitive model is used for the higher-level cognitive processes that occur over a 
longer time span. 

5.3.3 Sparse Distributed Memories 

Subtle issues such as the tip-of-the-tongue phenomena (Koriat & Lieblich, 1974) and the 
fact that we know if we know something (feeling of knowing) before becoming aware of the 
answer are not often modeled (although, see Schunn, Reder, Nhouyvanisvong, Richards, & 
Stroffolino, 1997, for a counter example). These effects may be captured using memory 
models such as Kanerva's (1988) Sparse Distributed Memory (SDM), which has been put 
forward as a plausible model of brain architecture, particularly the cerebellum, as well as by 
Albus's (1971) Cerebellar Model Arithmetic Computer (CMAC). 

The way in which a combatant's experience of the world is stored and modeled is 
important. An SDM seems to offer powerful human-like ways of recalling nearest matches 
to present experience in a best-first manner. They have the interesting property of storing 
memories such that recall works by finding the best match to imperfect data. They are also a 
natural way of storing sequences. They exploit interesting mathematical properties of binary 
metric spaces with a large number of dimensions. It is intriguing that SDMs have the 
human-like properties that they "know if they know" something before the retrieval process 
is complete. They also exhibit the tip-of-the-tongue phenomenon and replicate the human 
ability to recall a sequence or tune given the first few items or notes. They can also learn 
actuator sequences that might be used in muscle control or reflex patterns of behavior. This 
can even be seen as a kind of thinking by analogy that has a uniquely human-like ability to 
find a close match rapidly without exhaustive or even significant time spent in search. 

5.3.4 PSI and Architectures That Include Emotions 

PSI is a relatively new cognitive architecture designed to integrate cognitive processes, 
emotions, and motivation (Bartl & Dorner, 1998). The architecture includes six motives 
(needs for energy, water, pain avoidance, affiliation, certainty, and competence). Cognition 
is modulated by these motive/emotional states and their processes. In general, PSI organizes 
its activities similar to Rasmussen's (1983) hierarchy: first, it tries highly automatic skills if 
possible, then it skips to knowledge-based behavior, and as its ultima ratio approach it uses 
trial-and-error procedures. It is one of the only cognitive architectures that we know about 
that takes modeling emotion and motivation as one of its core tasks. Its source code, in 
Delphi Pascal, is available (www.uni-bamberg.de/ppp/insttheopsy/psi-software.html). 

A model in the PSI architecture has been tested against a set of data taken from a 
dynamic control task. The model performed the same task and its number of control actions 
was within the range of human behavior. Its predictions of summary scores were outside the 
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range of human behavior—the model was less competent (Detje, 2000)—but single 
subjects can be modeled by varying starting parameters (Dorner, 2000). In such a complex 
task as the "Island" scenario some people will use meta-cognition to improve their 
performance (particularly if they are encouraged to think aloud as they were in Detje's 
study). The same data could reveal that these subjects profit from meta-cognition and that 
their behavior then differs from what is implemented currently in PSI (see Bartl, 2000, for 
a more detailed explanation). 

This model needs to be improved before it matches human emotional data as well as 
other cognitive models match non-emotional data. It is, however, one of the few models of 
emotion compared with data. 

The PSI architecture is currently incomplete, which raises interesting questions about 
how to judge a nascent architecture. PSI does not have a large enough user community and 
has not been developed long enough to have a body of regularities to be compared with let 
alone adjusted to fit. How can PSI be compared with the older architectures with existing 
tutorials, user manuals, libraries of models, and example applications? 

Several other models of emotions and architectures that use emotions have been created. 
Reviews of emotional models (Hudlicka & Fellous, 1996; Picard, 1997) typically present 
models and architectures that have not been compared and validated against human data. 
There appears to be one other exception, an unpublished PhD thesis by Araujo at the 
University of Sussex (cited in Picard, 1997). Some of us are attempting to add several 
simple emotions to ACT-R (Belavkin, 2001; Belavkin et al., 1999) and validate the model 
by comparing the revised model with an existing model and comparable data (G. Jones, 
Ritter, & Wood, 2000). 

5.3.5 COGENT 

COGENT is a design environment for creating cognitive models and architectures 
(Cooper & Fox, 1998). It allows the user to draw box-and-arrow diagrams to structure and 
illustrate the high-level organization of the model and to fill in the details of each box using 
one or a series of dialogue sheets. The boxes include inputs, outputs, memory buffers, 
processing steps, and even production systems as components. 

COGENT's strengths are that it is easy to teach, the displays provide useful summaries 
of the model that help with explanation and development, and the environment is fairly 
complete. It appears possible to reuse components on the level of boxes. COGENT's 
weaknesses are that it is fairly unconstrained; for large systems it may be unwieldy; and it 
might not interface well to external simulations. 

COGENT also shows that cognitive modeling environments can at least appear more 
friendly. The results of its graphic interface routinely appear in talks as model summaries. 
The interface is also quite encouraging to users, allowing them to feel that they can start 
working immediately. 
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5.3.6 Hybrid Architectures 

Hybrid architectures are architectures that typically include symbolic and non-symbolic 
elements. A more general definition would be architectures that include major components 
from multiple architectures. 

Hybrid architectures are mentioned briefly by Pew and Mavor (1998, pp. 108-110). 
Work has continued in this area with some interesting results. LICAI (Kitajima & Poison, 
1996; Kitajima, Soto, & Poison, 1998), for example, models how people explore and use 
interfaces based on a theory of how Kintsch's (1998) schemas receive activation. The U.S. 
Office of Naval Research (ONR) has sponsored a research program on hybrid architectures 
(Gigley & Chipman, 1999). This has given rise to some new, interesting hybrid architectures 
(e.g., Sun, Merrill, & Peterson, 1998; Wang, Johnson, & Zhang, 1998). 

Perhaps the most promising hybrids are melding perception components across 
cognitive architectures. The EPIC (Kieras & Meyer, 1997) architecture's perception and 
action component has been merged with ACT-R's perceptual-motor component, ACT- 
R/PM (Byrne, 2001; Byrne & Anderson, 1998) and with Soar (Chong, 2001). This has led 
to direct reuse and unification. Similar results have been found with the Nottingham 
functional interaction architecture being used by Soar and ACT-R models (Bass et al., 1995; 
Baxter & Ritter, 1996; Ritter et al., 2000; G. Jones et al., 2000). 

5.4 Knowledge-Based Systems and Agent Architectures 

Agent architectures will be important within synthetic environments for modeling 
autonomous vehicles and for exploring the doctrine of autonomous vehicles. Most 
principled agent architectures have historical roots in distributed artificial intelligence. For 
several decades, distributed AJ has been tackling essentially the same problem as 
Knowledge-Based Systems (KBS) research, namely, how to produce efficient problem- 
solving behavior in software. The main concept that brings agency and KBS together is the 
idea of operation at the knowledge level as described by Newell (1982). 

The behavioral law used by an observer to understand the agent at the knowledge level 
is the principle of maximum rationality (Newell, 1982), which states, "If an agent has 
knowledge that one of its actions will lead to one of its goals, then the agent will select that 
action." The modeling of intelligent artificial systems at the knowledge level, that is, with 
no reference to details of implementation, is a key principle in KBS construction. It is also at 
the heart of many assumptions in the tradition of explaining human behavior. 

Nwana (1996) claims that an important difference between agent-based applications and 
other distributed computing applications is that agent-based applications operate typically at 
the knowledge level, whereas distributed computing applications operate at the symbol 
level. At the symbol level, the entity is seen simply as a mechanism acting over symbols, 
and its behavior is described in these terms. 

The theoretical links between the motivations behind KBS and agent research can be 
seen in the main approaches taken to the definition of software agency. Ascriptional agency 
attempts to create convincing human-like behaviors in software in the belief that this will 
produce programs that are easy to interact with. This work can be seen as paralleling the 
expert  behavioral   modeling  approach  that   is  currently  widely  espoused   in  the   KBS 
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community. The Belief-Desire-Intention (BDI) agents focus on the concept of 
intentionality—the mental attitudes of the agent. BDI models have been successfully 
implemented in systems such as the DESIRE framework (Brazier, Dunin-Keplicz, Treur, & 
Verbrugge, 1999) and the JAVA Agent Compiler and Kernel (JACK) component system 
(Busetta, Howden, Ronnquist, & Hodgson, 1999a; Busetta, Ronnquist, Hodgson, & 
Lucas, 1999b). 

JACK is an extension to JAVA. It includes a JAVA library and a compiler that takes a 
JAVA program with embedded JACK statements. A JAVA compiler expands/incorporates 
the JACK statements to create a runnable JAVA program. These statements implement a 
BDI architecture, while allowing JAVA statements to extend and implement them. The 
statements include commands like @achieve(condition, event), which subgoals on event if 
condition is not found to be true. 

The resulting program instantiates a BDI agent. Its BDI architecture is made up of 
beliefs represented with a database; desires represented as events that can trigger plans; and 
intentions represented through these plans. For example, a fact may come in from 
perception and match a desire, that of putting new facts into the database. This may result in 
further desires being matched and intentions (plans) leading to behaviors. Further 
information is available at the JACK developer's website (www.agent-software.com.au). 

Reviews of the agent literature (Etzioni & Weld, 1995; Franklin & Graesser, 1997; 
Wooldridge & Jennings, 1995)2 reveal that, when attempting to define agency as dependent 
on the possession of a set of cardinal attributes, many of the attributes suggested could also 
be seen as characteristic of behavior that is best explained at the knowledge level. These 
include abstraction and delegation, flexibility and opportunism, task orientation, adaptivity, 
reactivity, autonomy, goal-directedness, flexibility, collaborative and self-starting behavior, 
temporal continuity, knowledge-level communication ability, social ability, and cooperation. 

Both agent systems and KBSs are moving in the direction of modular components of 
expertise as a response to the problems of knowledge use and reuse to promote intelligent 
behavior in software. Domain ontologies form a significant subset of these KBS 
components. Increasingly, multi-agent systems are being produced that use such domain 
ontologies to facilitate agent communication at the knowledge level, for example, the agent 
network created as part of the Infosleuth architecture (Jacobs & Shea, 1996). Some agent 
systems also draw explicitly on models of problem-solving expert behavior developed in 
KBS research. The internet-based Multi-agent Problem Solving (IMPS) architecture (Crow 
& Shadbolt, 1998) uses software agency as a medium for applying model-driven knowledge 
engineering techniques to the internet. It involves software agents that can conduct 
structured online knowledge acquisition using distributed knowledge sources. Agent- 
generated domain ontologies are used to guide a flexible system of autonomous agents 
driven by problem-solving models. 

y 
For online information about examples and related U.S. programs, see www.darpa.mil/ito/ResearchAreas.html and 

www.nosc.mil/robots/air/amgsss/mssmp.html. 
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5.5 Architectural Ideas Behind the Sim Agent Toolkit3 

Since the early 1970s, Sloman and his colleagues have been attempting to develop 
requirements and designs for an architecture capable of explaining a wide variety of facts 
about human beings and other intelligent agents. Sloman's ideas about cognitive 
architectures and the theoretically based agent architecture toolkit (SimAgent) provide 
useful lessons about architectural toolkits and about process models of emotions. Further 
information is available at the CogAff website (www.cs.bham.ac.uk/~axs/cogaff.html). 

5.5.1 Cognition and Affect 

A human-like information processing architecture includes many components 
performing different functions all of which operate in parallel, asynchronously. This is not 
the kind of low-level parallelism found in neural nets (although such neural mechanisms are 
part of the infrastructure). Rather there seem to be many functionally distinct modules 
performing different sorts of tasks concurrently, a significant proportion of them are 
concerned with the monitoring and control of bodily mechanisms, for example, posture, 
saccades, grasping, temperature control, daily rhythms, and so on. 

The very oldest mechanisms in the human architecture are probably all reactive in the 
sense described in various recent papers (e.g., Sloman, 2000). The key feature of reactivity 
is the lack of "what-if' reasoning capabilities, with all that entails, including the lack of 
temporary workspaces for representations of hypothesized futures (or past episodes); the 
lack of mechanisms for stored factual knowledge (generalizations and facts about 
individuals) to support the generation of possible futures, possible actions, and likely 
consequences of possible actions; and the lack of mechanisms for manipulating 
explicit representations. 

Both reactive and deliberative mechanisms require perceptual input and can generate 
motor signals. However, to function effectively, both perceptual and action subsystems may 
have evolved new layers of abstraction to support the newer deliberative processes, for 
example, by categorizing both observed objects and events at a higher level of abstraction, 
and allowing higher-level action instructions to generate behavior in a hierarchically 
organized manner. More generally, different subsystems use information for different 
purposes so that a number of different processes of analysis and interpretation of sensory 
input occur in parallel, extracting different affordances from raw data from the optic array. 
Recent work by brain scientists on ventral and dorsal visual pathways are but one 
manifestation of this phenomenon. 

The interactions between reactive and deliberative layers are complex and subtle, 
especially as neither is in charge of the other, though at times either can dominate. 
Moreover, the division is not absolute: information in the deliberative system can sometimes 
be transferred to the reactive system (e.g., via drill and practice learning), and information in 
the reactive system can sometimes be decompiled and made available to deliberative 
mechanisms (though this is often highly error-prone). 

This section was drafted by Aaron Sloman and revised by the authors 
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For reasons explained in various papers available in the CogAff FTP site, it is possible 
to conjecture that at a much later evolutionary stage a third class of mechanism developed, 
again using and redeploying mechanisms that had existed previously. The new type of 
mechanism, which has been provisionally labeled "meta-management," provides the ability 
to do for internal processes what the previous mechanisms did for external processes: 
namely it supports monitoring, evaluation, and control of other internal processes, including, 
for instance, thinking about how to plan, or planning better ways of thinking. For example, a 
deliberative system partly driven by an independent reactive system and sensory 
mechanisms can unexpectedly acquire inconsistent goals. A system with meta-management 
can notice and categorize such a situation, evaluate it, and perhaps through deliberation or 
observation over an extended period, develop a strategy for dealing with such conflicts. 

Similarly, meta-management can be used to detect features of thinking strategies and, 
perhaps in some cases, notice flaws or opportunities for improvement. Such a mechanism 
(especially in conjunction with an external language) also provides a route for absorption of 
new internal processes from a culture, thereby allowing transmission between generations of 
newly acquired information without having to wait for new genetic encodings of that 
information to evolve. Through internal monitoring of sensory buffers, the extra layer adds a 
kind of self-awareness that has been the focus of discussions of consciousness, subjective 
experience, qualia, etc. As with external processes, the monitoring, evaluation, and re- 
direction of internal processes is neither perfect nor total and, as a result, mistakes can be 
made about what is going on, inappropriate evaluations of internal states can occur, and 
attempts to control processing may fail, for example, when there are lapses of attention 
despite firm intentions. 

Another feature of meta-management is its ability to be driven by different collections 
of beliefs, attitudes, strategies, and preferences, in different contexts, explaining how a 
personality may look different at home, driving a car, in the office, etc. Besides the three 
main concurrent processing layers (reactive, deliberative, and meta-management) identified 
above that others have found evidence for, a number of additional specialized mechanisms 
are needed, including: mechanisms for managing short- and long-term goals, a variety of 
long- and short-term memory stores, and one or more global alarm systems capable of 
detecting a need for rapid global re-organization of activity (freezing, fleeing, attacking, 
becoming highly attentive, etc.), and also producing that re-organization. 

For instance, whereas many people have distinguished primary and secondary emotions 
(e.g., Damasio, 1994), Sloman and his colleagues have proposed a third type, tertiary 
emotions, sometimes referred to as perturbances (Sloman, 1998a; Sloman & Logan, 1999). 
Primary emotions rely only on the reactive levels in the architecture. Secondary emotions 
require deliberative mechanisms. Tertiary emotions are grounded in the activities of meta- 
management, including unsuccessful meta-management. There are other affective states 
concerned with global control, such as moods, which also have different relationships to the 
different layers of processing. Many specific states that are often discussed but very 
unclearly defined, such as arousal, can be given much clearer definitions within the 
framework of an architecture that supports them. 

It looks as if various subsets of the capabilities described here arising out of the three 
layers and their interactions can be modeled in the architectures developed so far, for 
example, Soar, ACT-R/PM, Moffatt and Frijda's Will architecture (2000), and the various 
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logic-based models that dominate the ATAL (Architectures, Theories and Languages) series 
of workshops (e.g., Wooldridge, Mueller, & Tambe, 1996, also see mas.cs.umass.edu/atal/), 
and books like Wooldridge and Rao (1999). 

However, only small subsets of these capabilities can be modeled at present. Any 
realistic model of human processing needs to be able to cope with contexts including rich 
bombardment with multi-modal sensory and linguistic information; where complex goals 
and standards of evaluation are constantly interacting; where things often happen too fast for 
fully rational deliberation to be used; where everything that occurs does not always fall into 
a previously learned category for which a standard appropriate response is already known; 
where decisions have to be taken on the basis of incomplete or uncertain information; and 
where the activity of solving one problem or carrying out one intricate task can be subverted 
by the arrival of new factual information, new orders, or new goals generated internally as a 
side-effect of other processes. 

Where the individual is also driving a fast-moving vehicle or is under fire then it is very 
likely that a huge amount of the processing going on will involve the older reactive 
mechanisms, including many concerned with bodily control and visual attention. It may be 
some time before we fully understand the implications of such total physical immersion in 
stressful situations, including the effects on deliberative and meta-management processes. 
(For example, fixing attention on a hard planning problem can be difficult if bombs are 
exploding all around you. Can our models explain why?) 

5.5.2 Sim_Agent and CogAff 

Sloman and his colleagues' general architectural toolkit, the Sim Agent Toolkit, allows 
them to explore a variety of new ideas about complex architectures. It is not an architecture, 
but a steadily developing toolkit for exploring architectures. 

The CogAff architecture provides a schema, based on a 3 by 3 grid that provides a 
framework for describing specific architectures according to the grid components present, 
their control relationships, and how information flows between them. H-CogAff is a specific 
human-like version that is a particularly rich special case. Other special cases include 
various kinds of purely reactive (i.e., non-deliberative) architectures (perhaps insects or 
reptiles), Brooks' subsumption architectures, purely deliberative architectures (lots of old AI 
systems, early versions of Soar and ACT), and so on. 

Sloman and his colleagues also wanted a toolkit that supported exploration of a number 
of interacting agents (and physical objects, etc.) where each agent has a variety of very 
different mechanisms running concurrently and asynchronously, yet influencing one 
another. They also wanted to be able to very easily change the architecture within an agent, 
change the degree and kind of interaction between components of an agent, and speed up or 
slow down the processing of one or more sub-mechanisms relative to others (Sloman, 
1998b). In particular, they wanted to be able to easily combine different types of symbolic 
mechanisms and also sub-symbolic mechanisms within one agent. The toolkit was also 
required to support rapid prototyping and interactive development with close connections 
between internal processes and graphic displays. 

Because other toolkits did not appear to have the required flexibility and tended to be 
committed to a particular type of architecture, Sloman and his colleagues built their own 
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toolkit, which has been used for some time at the University of Birmingham and DERA, 
Malvern. Their toolkit is described briefly in Sloman and Logan (1999) and in more 
detail in the online documentation at the Birmingham Poplog FTP site 
(ftp.cs.bham.ac.uk/pub/dist/poplog/). The code and documentation are freely available online. 
The toolkit runs in Pop-11 in the Poplog system (inherently a multi-language AI system, so that 
code in Prolog, Lisp, or ML can also be included in the same process). Poplog has become 
freely available (www.cs.bham.ac.uk/research/poplog/freepoplog.html). 

At present, Sloman does not propose a specific overarching architecture as a rival to 
systems like Soar or ACT-R. He feels that not enough is yet known about how human minds 
work and, consequently, any theory proposing the architecture is premature. Instead, he and 
his group have been exploring and continually refining a collection of ideas about possibly 
relevant architectures and mechanisms. Although the ideas have been steadily developing, 
Sloman and his colleagues do not believe that they are near the end of this process. So, 
although one could use a label like CogAff to refer to the general sort of architecture they are 
currently talking about, it is not a label for a fixed design. Rather CogAff should be taken to 
refer to a high-level overview of a class of architectures in which many details still remain 
unclear. The CogAff ideas are likely to change in dramatic ways as more is learned about 
how brains work, about ways in which they can go wrong (e.g., as a result of disease, aging, 
brain damage, addictions, stress, abuse in childhood, etc.), and how brains differ from one 
species to another, or one person to another, or even within one person over a lifetime. 

The toolkit is still being enhanced. In the short term, they expect to make it easier to 
explore architectures including meta-management. Later work will include better support 
for sub-symbolic spreading activation mechanisms and the development of more reusable 
libraries, preferably in a language-independent form. 

5.5.3 Summary 

The SimAgent toolkit and the goals its developers have for it have some commonalties 
with other approaches. The need for a library of components is acknowledged. They 
emphasize that reactive behaviors are necessary and desirable, and that the emotional 
aspects arise out of the reactive mechanisms. It provides a broad range of support for testing 
and creating architectures. The toolkit provides support for reflection as a type of meta- 
learning. Other architectures will need to support reflection as well, particularly where the 
world is too fast-paced for learning to occur during the task (John, Vera, & Newell, 1994; 
Nielsen & Kirsner, 1994). 

The features that the toolkit supports help define a description of architectural types. 
The capabilities that can be provided, from perception to action and from knowledge to 
emotion, provide a way of describing architectures. 

The major drawback is that none of the models or libraries created in SimAgent have 
been compared with human data directly. In defense of this lack of comparison, Sloman 
claims that the more complex and realistic an architecture becomes, the less sense it makes 
to test it directly. Instead, he claims that the architecture has to be tested by the depth and 
variety of the phenomena it can explain, like advanced theories in physics, which also 
cannot be tested directly. 
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5.6 Engineering-Based Architectures and Models 

There is a history of studying process control in and near industrial engineering that 
includes studying human operators. This approach is not (yet) part of mainstream 
psychology, and Pew and Mavor (1998) do not make many references to work in this field. 

If tank operators and ship captains can be viewed as running a process, and we believe 
they can, there is a wide range of behavioral regularities referenced and modeled in 
engineering psychology that can be generalized and applied to other domains. Major 
contributions in this area include Reason's (1990) book on errors, Rasmussen's skill 
hierarchy (1983), the Cognitive Reliability and Error Analysis Method (CREAM) 
methodology for analyzing human performance (Hollnagel, 1998), and numerous studies 
characterizing the strengths and weaknesses of human operator behavior (de Keyser & 
Woods, 1990; Sanderson, McNeese, & Zaff, 1994). 

Engineers have also created intelligent architectures. These architectures have almost 
exclusively been used to create models of users of complex machinery, ranging from 
nuclear power plants to airplanes. The models are often, but not always, tied to simulations 
of those domains. Their approach is generally more practical. They are more interested in 
approximate timing and the overt behavior than in detailed mechanisms. These developers 
appear to be less interested in the internal mechanisms giving rise to behavior as long as the 
model is usable and approximately correct. 

These models of operators include models of nuclear power plant operators, the 
Cognitive Simulation Model (COSIMO; Cacciabue et al., 1992), and the Cognitive 
Environment Simulation (CES; Woods, Roth, & Pople, 1987). AIDE (Amalberti & Deblon, 
1992) is a model of fighter pilot behavior; the Step Ladder Model or Skill-based, Rule- 
based, Knowledge-based model is a generally applicable framework, originally formulated 
in electronics troubleshooting (e.g., Rasmussen, 1983). 

We will also look at a few operator models in more detail. 

5.6.1 APEX4 

APEX (Freed & Remington, 2000; Freed et al., 1998; John et al., 2002) is a set of tools 
for simulating human performance when interacting with interfaces to perform tasks similar 
to MIDAS (Laughery & Corker, 1997). The main driver for APEX is the need to model 
behavior in environments, such as air traffic control and commercial jet flight decks, and to 
help engineers design usable systems in these domains 

Powerful action-selection mechanisms of the sort developed by artificial intelligence 
researchers are used to cope adaptively with time-pressure and uncertainty, and to 
coordinate the execution of multiple tasks (i.e., strategic multi-tasking). Usability is taken 
very seriously (Freed & Remington, 2000). A high-level modeling language is included. 
Applications of APEX have included time-analysis of skilled behavior, partially-automated 

Comments from Michael Freed were helpful in preparing this section. 
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human-factors   design   analysis,   and   creation   of   artificial   human   participants   in 
large-scale simulations. 

This general approach has proven successful in allowing APEX to automate the CPM- 
GOMS HCI analysis method (John & Kieras, 1996) and for reconstructing incidents 
involving human error in a way that promise eventual error-prediction capabilities. As much 
as it implements CPM-GOMS, it inherits CPM-GOMS' empirical support. Consistent with 
the needs of domains in which APEX has been most frequently used, the action-selection 
architecture emphasizes capabilities having to do with multi-task management, especially 
regarding concurrency control and strategic task management. 

APEX was created by Freed as part of his doctoral dissertation and continues to be 
developed by researchers at NASA Ames Research Center and elsewhere. They are 
explicitly concerned about building a community of users to share ideas and models. Further 
information, including APEX itself, is available through search engines. 

APEX is probably best described as an engineering model because it has been designed 
to serve engineering goals. APEX is interesting because it models the whole operator, from 
perception to action, and the model often interacts with fairly complete and complex 
simulations, and can make very detailed predictions easily. It does not yet include learning, 
and the complex results past CPM-GOMS could be tested more, but the full toolset suggests 
that interface design tools based on cognitive models are now possible. 

5.6.2 Simplified Model of Cognition and Contextual Control Model 

The Simplified Model of Cognition (SMoC) (Hollnagel & Cacciabue, 1991) is an 
extension of Neisser's (1976) perceptual cycle and describes cognition in terms of four 
essential elements: (1) observation/identification, (2) interpretation, (3) planning/selection, 
and (4) action/execution. Although these are normally linked in a serial path, other links are 
possible between the various elements. The small number of cognitive functions in SMoC 
reflects the general consensus of opinion that has developed since the 1950s on the 
characteristics of human cognition. The fundamental features of SMoC are the distinction 
between observation and inference (overt vs. covert behavior), and the cyclical nature of 
cognition (cf. Neisser, 1976). 

SMoC was formulated as part of the System Response Generator (SRG) project 
(Hollnagel & Cacciabue, 1991). SRG was a software tool developed to study the effect of 
human cognition (specifically actions and decision making) on the evolution of incidents in 
complex systems. 

The Contextual Control Model (CoCoM; Hollnagel, 1993) is an extension of the SMoC, 
and addresses the issues of modeling both competence and control. In most models the issue 
of competence is supported by a set of procedures or routines that can be employed to 
perform a particular task when a particular set of pre-defined conditions obtains. CoCoM 
further proposes that there are four overlapping modes of control—influenced by knowledge 
and skill levels—that also influence behavior: 
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Scrambled control: where the selection of the next action is unpredictable. This is 
the lowest level of control. 

• Opportunistic control: where the selection of the next action is based on the current 
context without reference to the current goal of the task being performed. 

• Tactical control: where performance is based on some form of planning. 

• Strategic control: where performance takes full account of higher-level goals. This 
is the highest level of control. 

The transition between control modes depends on a number of factors, particularly the 
amount of subjectively available time and the outcome of the previous action. These two 
factors are interdependent, however, and also depend on aspects such as the task complexity 
and the current control mode. 

CoCoM has been used in the development of the CREAM (Hollnagel, 1998) within the 
field of human reliability analysis. The CREAM is a method for analyzing human 
performance when working with complex systems. It can be used in both the retrospective 
analysis of accidents and events, and in predicting performance for human reliability 
assessment. Extending the CREAM is presented below as a useful project. 

5.6.3 Summary 

These engineering-based architectures suggest that engineering models can provide 
useful behavior even when the internal mechanisms are not fully tested or perhaps even 
plausible. These architectures suggest that some of the difficulty in creating the architectures 
is due to the implicit and explicit knowledge that psychologists bring with them regarding 
plausibility. We believe psychologists' domain knowledge leads to more accurate models 
but slower development. 

5.7 Summary of Recent Developments for Modeling Behavior 

This chapter has reviewed several architectures. These architectures and their 
applications show that it is becoming increasingly possible to create plausible and useful 
architectures based on a variety of approaches. 

An agreed, formal scheme for classifying architectures would be useful. This ideal 
system classification would note the sorts of tasks that each architecture performs best, 
supporting users to choose an architecture for a particular task. The best that we have found 
is Table 3.1 in Pew and Mavor (1998, pp. 98-105). OurTable 5.1 provides a summary of the 
architectures presented here in that same format as a supplement to their table. We have 
included all relevant information of which we are aware for each architecture. In most cases 
the developers of the architectures have helped complete their entry in this table. Another 
approach for classifying architectures is available from Logan (1998). 

Developments in AI continue to be useful. The general AI methods discussed are not 
included in this table because they are not broad enough to be considered a cognitive 
architecture, but they are likely to be useful additions to architectures, either directly or 
indirectly. For example, genetic algorithms have been included in a proposed architecture 
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(Holland, Holyoak, Nisbett, & Thagard, 1986), and planning algorithms have been included 
as adjuncts to Soar (Gratch, 1998). These developments will help extend architectures by 
providing algorithms for inclusion within architectures, particularly hybrid architectures. 

There are several interesting trends to note. One is that the diversity of architectures is 
not decreasing. New, fundamental ideas on which to base architectures has widened from 
simply problem solving. For example, EPAM is based on pattern recognition, and PSI and 
architectures created in the SimAgent Toolkit are based on ideas about emotions. 

Another interesting trend is that some aspects of the architectures are starting to merge 
and be reused. The interaction aspects of EPIC have been reused by Soar and by ACT-R. 
The Nottingham Interaction Architecture is similar in some ways and getting similar reuse 
(e.g., Jones et al., 2000). These strands are becoming quite similar to each other (Byrne, 
Chong, Freed, Ritter, & Gray, 1999) and are quite likely to merge in the future. 

The importance of model usability is becoming more recognized. COGENT provides an 
example of how easy a modeling tool should be to pick up and use. Similar developments 
with Soar and ACT-R are starting to emphasize reusable code, better documentation, and 
better tutorial materials. Other architectures will have to follow suit to attract users and to 
train and support their existing users. Newell (1990) wrote about the entry level (the bar) 
being raised as architectures develop through competition. It is interesting that usability is 
perhaps the first clear comparison level. 

44 Human Systems IAC SOAR, 2003 



Table 5.1: Comparison of Architectures 

Chapter 5. Recent Developments tor Modeling 

Architecture Original purpose 

Submodels 

Sensing and perception 

1    EPAM Model high-level perception, 
learning, and memory 

Visual, auditory perceptual discrimination in 
real-time (assuming feature-based description 
of objects) 

2    SDM Simulation of cerebellum as a 
content-addressable memory 

Can be used to recall the nearest stored 
memory to any encoded perceptual input 

3    PSI Explores interaction of cognition, 
motivation, and emotion to build an 
integrated model of human action 
regulation 

Optical perception by "Hypercept" process that 
scans (simulated) environment for basic 
features. Raises hypotheses about sensory 
schemas to which features may belong and 
tests these hypotheses by subsequent 
scanning of environment (comparable to 
saccadic eye-movements). If pattern not 
recognizable, new schema generated 

4   COGENT Design environment for modeling 
cognitive processes 

Input buffers that can be modified to represent 
vision and hearing 

JACK as example of BDI 
architectures 

Constitute an industrial-strength 
framework for agent applications 

JAVA methods + inter-agent messaging 

6    SimAgent Toolkit Explores architectures using rapid 
prototyping 

Defined by methods for each agent class. 

7    Engineering-based 
models (e.g., APEX) 

Provide models of humans in control 
loops 

Varies, but exists for most models 
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Submodels 

Working/ 
Short-Term memory 

Long-Term Memory Motor Outputs 

4-7 slot STM; in some 
versions (e.g., EPAM-IV), 
more detailed 
implementation of auditory 
(Baddeley-like) STM & visual 
STM 

Discrimination net. In recent versions, 
nodes of discrimination net used to 
create semantic net and productions 

Eye movements, simple drawing 
behavior 

Not modeled Sparse Distributed Memory models 
related to PDP and neural-net 
memory models 

Motor sequences can be learned. 
Nearest match memories can be 
sequences that could be 
behaviors 

The head of a protocol 
memory that permanently 
makes a log of actions and 
perceptions 

The remnants of logs decay with time.    Basic motor patterns (actions) 
Strings of logs associated with need 
satisfaction or with pain will be 
reinforced and have a greater chance 
to survive and form a part of long-term 
memory than neutral sequences of 
events 

combined to form complex 
sensory-motor-programs by 
learning (i.e., by reinforcement of 
the successful sensory-motor- 
patterns in logs) 

Various types supported Various types supported Simple buffer representation of 
commands 

Object-oriented structures 
(JAVA), plus relational 
modeling support (JACK) 

All JAVA support including database 
interfaces etc. Support for data 
modeling in JAVA and C++ using 
JACOB (JACK Object Builder) 

JAVA methods 

List structures List structures, rules, and arbitrary 
Pop-11 data structures. Can also use 
neural nets, if required 

Defined by methods for each 
agent class 

Usually simple, but extant Usually simple, but extant Usually extant, but usually not 
complex 
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Table 5.1: Comparison of Architectures (continued) 

Knowledge Representation 

Architecture Declarative Procedural 

1    EPAM Chunks, schemas (templates); using nodes      Productions using nodes in 
in discrimination net discrimination net 

2    SDM A sparse set of memory addresses where 
data are addresses 

Memories naturally form sequences 
that could be considered procedures 

3    PSI Sensory and sensory-motor patterns 
consisting of pointer structures forming 
schemas. A schema includes information 
about more basal elements and relations of 
elements in space and time, including 
language patterns pointing to sensory and 
sensory-motor patterns (implementation in 
progress) 

Sensory-motor-patterns forming 
automatisms 

4    COGENT Numbers, strings, lists, tuples, connectionist     Production rules, connectionist 
networks networks, Prolog 

5   JACK as an example of 
BDI architectures 

Object-oriented structures (JAVA), plus 
relational modeling support 

JACK plans and JAVA methods 

6    SimAgent Toolkit List structures and arbitrary Pop-11 data 
structures (e.g., could be constrained to 
express logical assertions but need not be). 
Could use neural nets or other mechanisms 

Rule sets and arbitrary Pop-11 
procedures that can also invoke Prolog 
or external functions 

7    Engineering-based 
models (e.g., APEX) 

Varies, but usually simple Varies, but usually simple. Many use 
some form of schemas 
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Table 5.1: Comparison of Architectures Covered (continued) 

Higher-Level Cognitive Functions 

Learning Planning Decision Making Situation 
Assessment 

Chunking, creation of 
schemas, and production 
learning online (incremen- 
tal) and stable against 
erroneous data 

Connections between tem- 
plates used in planning 

Knowledge based Overt and inferred 

By incrementing weights 
across a probability 
distribution 

Does not plan, but can 
remember plans 

Iterative memory recall 
process 

Can learn a set of 
assessments and 
generalize these 

Associative and perceptual 
learning; operant 
conditioning: sensory-motor 
learning, learning goals 
(situations that allow need 
satisfaction) and aversions 
(situations or objects that 
cause needs) 

Built-in hill-climbing proce- 
dure: action schemata (i.e., 
sensory-motor-patterns) are 
recombined to form new 
plans. If planning unsuc- 
cessful or impossible due to 
lack of information, trial- 
and-error procedures used 
to collect environmental 
information 

Expectancy-value- 
principle 

Built in as part of problem 
solving 

Common methods within 
connectionist modules 

Could be implemented in 
rule modules 

Specific to module type. 
Can vary 

None built in 
(users can specify) 

None built in 
(users can specify as 
required by their 
architecture) 

None built in 
(users can specify as 
required by their 
architecture) 

Includes BDI 
computation model 

Includes BDI 
computation model 

None built in 
(e.g., Wright et al. 1996, 
included simple forms of 
deliberative mechanisms 
and meta-management) 

None built in 
(users can specify as 
required by their 
architecture). Logan's A* 
with bounded constraints 
available, among others 

None built in 
(users can specify as 
required by their 
architecture) 

None built in 
(users can specify as 
required by their 
architecture) 

Usually not extant Varies, some models do 
well 

Usually good; decision 
making domain of these 
models 

Varies, often implicit 
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Table 5.1: Comparison of Architectures (continued) 

Architecture 

Multitasking 

Serial/Parallel Resource Representation 

1    EPAM Serial processing; learning done in 
parallel 

Limited STM capacity, limited perceptual 
and motor resources (uses time 
parameters) 

2    SDM Fully parallel recall process, serial 
recall of sequences 

Architecture too low-level for 
representation to be explicit 

3    PSI System tries to fulfill different needs 
(i.e., water, energy, pain-avoidance, 
etc.); interrupts goal-directed 
behavior to profit from unexpected 
opportunities 

Allocation of time to run intention according 
to strength of underlying need and 
according to expectancy of success 

4    COGENT Modules can work in parallel, but 
information passed between them 
serially 

Would vary with the knowledge included in 
modules 

JACK as an example of BDI 
architectures 

Supports multiple computational 
threads handled safely within the 
JACK Kernel—achieving atomic 
reasoning steps 

Agents have time perception. Time can be 
real or simulated (dilated, externally 
synchronized, etc.) 

6    SimAgent Toolkit Discrete event simulation technique, 
with rule sets within each agent time- 
sliced, as well as different agents 
being time-sliced 

Allocation of cycles per time-slice can be 
made for each rule set, or for each agent. 
No built-in memory resource limits. Will 
differ for each architecture type created 

Engineering-based models 
(e.g., APEX) 

Varies, sometimes explicit models Varies. Those that interact with simulations 
more advanced 
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Table 5.1: Comparison of Architectures (continued) 

Multiple Human Modeling Implementation Platform 

Goal/Task Management 

Bottom up + 1 main goal       Potential through multiple EPAM       Mac, PC (any system supporting 
per task simulated modules Common Lisp). Graphic environment 

supported only for Macintosh 

None None UNIX (easily ported) 

There is a steady 
competition of different 
needs/motives to rule. 
Strongest will win and 
inhibit others 

Potential through multiple PSI 
models with different 
"personalities" by varying starting 
parameters. Multiple agents can 
run in same environment, see 
each other, interact, and, to a 
certain degree, communicate 

Windows 95, 98, 2000, NT 

None built in. Users can 
specify through module 
selection and 
programming 

None UNIX (X windows). Microsoft Windows 

Built in. JACK Language 
includes: waitfor 
(condition), maintenance 
conditions, meta-level 
reasoning, etc. 

Allows multiple agents, running 
together or distributed, to interact 
and communicate as a team or as 
adversaries. Extensions to the 
basic model (e.g., team models 
also allowed) 

Runs on all platforms that support JAVA 
1.1.3 or later. Graphic components (i.e., 
development environment) require JAVA 
2 v 1.2 or later 

None built in 
(users can specify as 
required by the 
architecture) 

Toolkit allows multiple agents to 
sense one another, act on one 
another, and communicate with 
one another 

Runs on any system supporting Poplog 
(and for graphics, X window system). 
Tested on Sun/Solaris, PC/Linux, DEC 
Alpha/UNIX. Should also run on other 
UNIXes and VAX VMS. Should work 
without graphics on Windows NT Poplog 

Varies. Some advanced Some have none; some work in 
teams 

Varies. Not usually designed for 
dissemination 
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Table 5.1 Comparison of Architectures (continued) 

Architecture Implementation Language Support Environment 

1    EPAM Common Lisp Lisp programming + editing tools. Some 
graphic utilities for displaying eye 
movements, structure of discrimination 
tree, and task. Customized code used for 
each task modeled 

2    SDM C, JAVA None 

3    PSI Pascal (Delphi 4) Delphi 4 features 

4    COGENT Prolog Graphic and textual editors 

5    JACK as an example of BDI 
architectures 

JAVA. JACK written in and 
compiles into pure JAVA 

JACK Make utilities, and all available 
JAVA tools. JACK development 
environment (JDE) provides GUI for 
creating and editing agent structures. 
Further debugging and visualization tools 
under development 

6    SimAgent Toolkit Pop-11 (but allows invocation of 
other Poplog languages (Prolog, 
Common Lisp, Standard ML, & 
external functions, e.g., C) 

Poplog environment, including 
VED/XVED, libraries, incremental 
compiler, etc 

7    Engineering-based models 
(e.g., APEX) 

Varies Often simple 
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Validation Comments 

Extensive at many levels EPAM models focus on single, specific 
information processing task at a time. Not yet 
scaled up to multitasking situations. Used in 
high-knowledge domains (e.g., chess, with 
about 300,000 chunks) 

None SDM should be seen as system component 
(e.g., good way of representing long-term 
memory for patterns and motor behaviors in 
larger system) 

Achievement data and parameters of behavior 
compared between subjects and models in two 
different scenarios (BioLab and Island). Different 
human subjects can be modeled by varying 
parameters 

Would be by architecture. Some have been done by 
modeling previously validated models 

Would be by architecture. None known 

Would be by architecture. None known 

By model. Usually validated with expert opinion. Some 
may be compared with data 

Wide range of models here 
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CHAPTER 6 

Review of Recent Developments and 
Objectives: Specific Projects 

We now examine specific projects within the general application areas noted in 
Chapters 2, 3, and 4, broadly grouped into projects that support the objectives in the 
previous chapters, that is, of providing more complete performance, supporting integration 
of models, and improving model usability. The format of the projects follows the general 
format used in Pew and Mavor (1998). Where appropriate, this summary also comments on 
the feasibility and concerns that may arise if the projects are implemented in Soar, a current 
common approach for computer-generated forces. The estimates are uniformly optimistic to 
allow comparisons. The estimates are in terms of programmer or analyst time, and assume 
adequate supervision and cooperation with other organizations. 

6.1 Projects Providing More Complete Performance 

The projects presented here address the issues raised in Chapter 2. They are grouped 
into three main categories. We also note some potential additional uses for models of 
behavior as well as current uses in synthetic environments. 

6.1.1 Gathering Data From Simulations 

It is very clear and consonant with Pew and Mavor (1998, chap. 12) that data need to be 
gathered to validate models of human and organizational behavior. An approach at which 
they hint is to instrument synthetic environments. Synthetic environments should be 
instrumented not only for playback, but also in a way to provide data for developing and 
testing models. While the data are not directly equivalent to real-world behavior, as the 
environment becomes more realistic the data should become more realistic as well. 

A uniform representation for data from simulations should be created. This 
representation should be readable by humans, at least in some formats. 

Creating summary measures will also be necessary. Otherwise the sheer volume of data 
may preclude its analysis. The individual actions of control are not likely to be useful on 
their own (e.g., pressing an accelerator) but will be required to build higher-level 
summaries. Creating these summaries is likely to represent an additional research agenda 
item requiring AI, domain knowledge, and some understanding of behavioral data. 

The payback could be quite large for developing models. Analysis of data from 
synthetic environments might also provide insights into the quality of the simulation (e.g., 
how quickly someone could act and whether they were limited by the simulation's ability to 
display information) and provide insights about the implementation of doctrine (e.g., how 
often tank crews actually follow doctrine). When done in cooperation with a simulator's 
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developers, the resources required for this task could be quite modest. Otherwise, it could 
take some time. Developing initial automated summaries is a 6- to 12-month effort. 

6.1.2 Understanding Expectations of Behavior 

Providing realistic behavior requires understanding what people expect from other 
people and what aspects of an adversary are necessary for training. (These two may be quite 
different.) In one sense, this means understanding the Turing test: what is necessary to 
appear human? More important, however, is knowing what is necessary to train people. A 
model that passes the Turing test and appears human might be weaker or unusual in some 
way. Thus, training with the model might not result in transfer of learning or result in 
learning an incorrect behavior. 

A useful exercise would be to study which characteristics of behavior make a model 
appear human (so-called believable agents). The model must start with competencies; it 
must be able to perform tasks. It should also include errors, hesitations, and variations 
in behavior. 

Work with the Soar Quake-bot on how firing accuracy and movement speed make 
agents believable is an example of what is required (Laird & Duchi, 2000) to understand 
what people think is human. The Soar Quake-bot has been evaluated on such things as firing 
accuracy with observers asked to rate its humanness. The measure of humanness, however, 
does not reveal how good the Quake-bot is with respect to training. Nor does it reveal what 
aspects of the Quake-bot should be made more (or less) human to improve training. The 
current belief is that appearing (or behaving) more human makes a better opponent to train 
against, but we do not know of any evidence to support this belief. 

Another example is the Fuzzy Logic Adaptive Model of Emotions (FLAME). In this 
work (Seif El-Nasr, Yen, & Ioerger, 2000), several models of a pet that followed the user 
around in a virtual house were tested for believability. The model that included learning and 
fuzzy behavior was the judged the best. While not a complete test, this type of project starts 
to find out what makes agents believable through tests. In this example, learning and 
emotions were both helpful. 

A useful 6-month to 1-year study would be to examine a range of models and humans in 
a synthetic environment, noting observers' comments and behavior toward a range of 
behavior. It might be that these aspects make an agent appear human, but it might also 
include implicit effects, such as second-order (or lagged) dependencies in behavior. The 
results would be important for training and also useful for creating models used in analysis. 
This project is similar to, but conceived of separately from, a similar call proposed by 
Chandrasekaran and Josephson (1999) to develop a better understanding of how to and how 
far to develop models. 

The results are also essential for understanding how to help modelers. The results will 
point out the most likely mismatches to be left in models because modelers do not consider 
such behavior abnormal. This will provide suggestions about where comparisons with data 
are particularly needed by models. As this is basically experimental work, less resources are 
needed, but the time to run the experiment and analyze the results will take up to a year for 
preliminary studies. 
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6.1.3 Including Learning in Models 

Work on creating agents in synthetic environments has been successful, however, one 
particularly useful aspect that has not been modeled is learning. A worthwhile project would 
be to take a learning algorithm and put it to use within a synthetic environment, either as 
part of a problem solver or as an observer. There are a variety of learning algorithms and 
models that would be appropriate. Some examples include: connectionism; one of the 
hybrid learning architectures developed within the ONR program (Gigley & Chipman, 
1999); Programmable User Models (Young, Green, & Simon, 1989b); Soar with learning 
turned on; ACT-R; EPAM; or any of a wide variety of machine-learning algorithms. 

Creating a model that learns will be difficult. This task is large and would allow 
multiple subprojects to be attempted. It could be supported by a wide range of resources. 
Including learning with problem solving has been difficult in the past, but it is likely to lead 
to more accurate agents that may be useful for testing and developing tactics. 

Soar models exist that function fairly well in a synthetic environment. If these could be 
used, a small project of a programmer-year or two should be able to create an initial model 
that learns in a synthetic environment. Attaching a learning component to find regularities in 
behavior is likely to take at least that much time. Both projects would provide potential PhD 
topics and are broad enough to be supported by a wide range of resources. 

6.1.4 Including a Unified Theory of Emotions 

There are three specific projects related to modeling emotions and other behavioral 
moderators in architectures that we can propose: (1) adding general emotional effects, (2) 
adding reactive emotions, and (3) testing emotional models with performance data. While 
work is ongoing implementing models like this in Soar (Chong, 1999; Gratch, 1999) and 
ACT-R (Belavkin et al., 1999), the domain is large. Projects can range from a few months to 
implement a simple emotional effect to several years or decades to incorporate a 
significant amount. 

Adding general emotional affects. As noted above, it is possible to start to realize 
emotions and affective behavior within toolkits like SimAgent and general cognitive 
architectures like ACT-R and Soar. Including emotions will provide a more complete 
architecture for modeling behavior and a platform for performing future studies of how 
emotions affect problem solving. Including emotions may also provide a way to duplicate 
personality and provide another approach to account for appropriate variations in behavior. 
Hudlicka (1997) provides a list of intrinsic and extrinsic behavior moderators (similar to the 
categories suggested in Ritter, 1993b) that could be modeled. Boff and Lincoln (1988) 
provide a list of regularities related to fatigue and other related stressors that might be 
considered for testing against a general model of emotional effects. For example, by making 
ACT-R's motivation sensitive to local performance (rule successes and failures), we have fit 
the Yerkes-Dodson law (Belavkin & Ritter, 2000). 

These models should move from applying to a single task to multiple tasks. They would 
then become modifications to the architecture and thus reusable. 
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Adding reactive emotions. Modeling reactive and long-term moderators as well as 
slower-acting behavioral moderators is worthwhile. The effect of stress also changes the 
state of the competence in important ways. A proportion of troops engaged in active combat 
will become ineffective as a result of fear and stress-fatigue. Stress would also be increased 
by the number of casualties taken by a given platoon, length of time without sleep, weather 
conditions, perceived chance of survival, and so on. Modeling these effects at the micro- 
level of individuals, following known distributions, would advance the realism of 
simulations in interesting ways and support teaching existing doctrine. 

In production system architectures, these emotions can initially be implemented by 
changing the decision (rule-matching) procedure, adding rules to make parameter changes, 
and by augmenting working memory to include affective information (e.g., an operator or 
state looks good or bad). These types of changes are being applied to an existing model, 
which matches adult behavior well, to better match children's more emotional behavior 
(Belavkin et al., 1999). These emotional effects should improve the match to the children's 
performance by (1) slowing down performance in general, (2) slowing down initial 
performance as the child explores the puzzle driven by curiosity, and (3) abandoning the 
task if performance is not successful. This work should be extended and applied 
more widely. 

Testing emotional models with performance data. Many of the theories of emotions 
proposed have not been compared with detailed data. Partly this may be because there is not 
always a lot of data available on how behavior changes with emotions. It is no doubt a 
difficult factor to manipulate safely and reliably. But the models must not just be based 
on intuitions. 

The use of simulators may provide a way to obtain further data with some validity. 
Better instrumentation of some primary features of emotions (e.g., heart rate, blood 
pressure) is providing new insights (Picard, 1997; Stern, Ray, & Quigley, 2001) and will be 
necessary for testing models of emotions. 

Some argue that emotions are necessary for problem solving. Examples of brain- 
damaged patients (e.g., Damasio's Elliot [1994]), who have impaired problem solving and 
impaired emotions, are put forward. It is not clear that emotions per se are required, or if 
multiple aspects of behavior are impaired as well as emotions by the trauma. Others argue 
from first principles that emotions (realized as changes in motivation due to local success 
and failure during problem solving in this example) can improve performance (Belavkin, 
2001). A model compared with data may help answer whether this is true. Clearly, AI 
models of scheduling do not have the same troubles scheduling an appointment despite their 
lack of emotion. 

6.1.5 Including Errors 

There are two premises that underpin the modeling of erroneous behavior. The first 
premise is that the attribution of the label error to a particular action is a judgment made in 
hindsight. The identification of the erroneous action forms the starting point for further 
investigation to identify the underlying reasons why a particular person executed that 
particular action in that particular situation. In other words, the erroneous action arises as the 
result of a combination of factors from a triad of sources: the person (psychological and 
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physiological  factors),  the  system  (in the most  general  sense  of the term),  and  the 
environment (including the organization in which the system is deployed). 

The second premise acknowledges that an error is simply another aspect of behavior. In 
other words, any theory of behavior should naturally encompass erroneous behavior. The 
behavior can be judged as erroneous only with respect to a description of what constitutes 
correct behavior. 

Once these premises are accepted, it becomes apparent that modeling erroneous 
behavior is actually an inherent and important part of modeling behavior. If the 
psychological and physiological limitations of human behavior are incorporated into a 
model of human behavior, then particular types of erroneous behavior should naturally 
occur in certain specific situations. The corollary of this argument is that an understanding 
of erroneous behavior can be used as the basis for evaluating models of behavior. So, if a 
human performs a task correctly in a given situation, the model should also be able to 
perform the task correctly in the same situation. If the situation is changed, however, and the 
human generates erroneous behavior as a result, the model should also generate the same 
erroneous behavior as the human in the new situation, without any modifications being 
required to the model. 

Modeling error therefore depends on understanding the concept of error—its nature, 
origins, and causes—and central to this is the need for an accepted means of describing the 
phenomenon (Senders & Moray, 1991). In other words, a taxonomy of human error is 
required with respect to these tasks. 

The utility of the taxonomic approach, however, depends on the understanding that the 
taxonomy is generated with a particular purpose in mind. In other words, the taxonomy has 
to reflect: 

• A particular notion of what constitutes an error. 

• A particular level of abstraction at which behavior is judged to be erroneous. 

• A particular task or domain. 

There is a need to be very clear about the classes of errors and their origin in the models 
so that the appropriate ones can be included. In the military context, for example, a major 
source of error is communication breakdown. One approach to developing an appropriate 
taxonomy of errors for the military domain is to use the scheme that lies at the heart of the 
CREAM (Hollnagel, 1998). The CREAM purports to be a general purpose way of analyzing 
human behavior in both a retrospective and a predictive manner. Although the method was 
developed on the basis of several years of research into human performance, mainly in the 
process industries, it is intended to be applicable to any domain. 

The CREAM uses a domain-independent definition of what constitutes an erroneous 
action (also called error modes or phenotypes). One of the goals of the CREAM is to be able 
to identify the chain of precursors for the various error modes. Identifying the chain is 
achieved by means of a set of tables that define categories of actions or events. At the 
highest level, there are three types of tables: 

Human Systems IAC SOAR, 2003 57 



Modeling Human Perfonvance 

• Human (or operator), 

• Technological (or system), and 

• Organizational (or environment). 

Within these categories there are sub-category tables. So, for example, the human tables 
include observation, interpretation, planning, and so on. 

The individual actions or events are paired together across tables on the basis of 
causality or, to use a more neutral term, in a consequent-antecedent relationship. When the 
CREAM is used to analyze a particular accident or incident retrospectively, the aim is to 
build up the list of possible chains of events and actions that led to the accident or incident. 

The contents of the tables are domain-specific, so the first step in developing the 
taxonomy for agents in synthetic environments depends on identifying the appropriate 
categories of events and actions for the military domain. These categories and the links 
between individual actions or events will be generated from a combination of knowledge 
elicited from domain experts and a review of the appropriate literature. 

The second step is to generate the possible chains of actions and events that precede the 
various error modes, based on information available from reports of real accidents or 
incidents. This process will involve access to desensitized accident or incident reports—like 
those used in the Confidential Human Factors Incident Reporting Programme (CHIRP; 
Green, 1990) originally operated by the RAF Institute of Aviation Medicine—that can be 
analyzed and coded using the domain-specific CREAM tables generated in Step 1. Where 
omissions from the tables are detected, or links between actions do not already exist, these 
should be added to the tables. 

The possible causal chains of events or actions generated by the second step will 
provide the basis for a specification of behavior in a particular situation. Models of behavior 
should yield the same sequences of actions and events in the same circumstances. The 
specification of behavior can therefore be used to test the models of behavior for 
compliance, during development, with the model being modified as appropriate to match 
the specification. 

In addition, the results of the analysis of the incident behavior provide a basis for 
evaluating the veracity of synthetic environments. Performance in the real world (as 
described in the incident reports) can be compared with the way people behave when 
performing in the synthetic environment. There should be a high degree of correspondence 
between the two. If there is a mismatch, the mismatch suggests that there is a difference 
between the real world and the synthetic environment, which may be worth further 
investigation to identify the source of the difference. 

One other beneficial side effect of the CREAM analysis is that the resultant chains of 
actions and events can be used in training personnel to manage error. If common chains of 
actions or events can be identified, it may be possible to train personnel to recognize these 
chains, and take appropriate remedial action before the erroneous action that gives rise to 
the incident is generated. 
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Initial models that include erroneous behavior can best be created with an existing 
model. One to three years of work should lead to an initial model that includes some errors 
and has been validated against human behavior. 

6.1.6 Including a Unified Theory of Personality 

It would be useful to identify features that lead to modeling personality, problem- 
solving styles, and operator traits. While models that choose between strategies have been 
created, there are few models that exhibit personality by choosing between similar strategies 
(although see Nerb, Spada, & Ernst, 1997, for an example used to put subjects in a veridical, 
but artificial, social environment). Personality will be an important aspect of variation in 
behavior between agents. 

Including personality requires a task (and the model) to include multiple approaches and 
multiple successful styles. It is these choices that can thus appear as a personality. If the task 
requires a specific, single approach, it is not possible to express a strategy. Psychology, or at 
least cognitive psychology, has typically not studied tasks that allow, or particularly 
highlight, multiple strategies. Looking for multiple strategies has also been difficult because 
it requires additional subjects and data analysis that before has not represented real 
differences in task performance. Differences in strategies, however, lead to variance in 
behavior (e.g., Delaney, Reder, Staszewski, & Ritter, 1998; Siegler, 1987). 

There appear to be at least the following ways to realize variance in behavior that might 
appear like personality: learning, differences in knowledge, differences in utility theory and 
initial weighting, and differences in emotional effects. Including a subset of these effects in 
a model would fulfill a need for a source of regular, repeatable differences between agents 
in a situation. 

All of the current cognitive architectures reviewed here and in Pew and Mavor (1998) 
can support models of personality. These types of changes should be straightforward, as 
long as there are multiple strategies. In Soar, personality can be expressed as differences in 
task knowledge, as well as differences in knowledge about strategy preferences either 
absolutely or based on different sets of state and strategy features. ACT-R appears to learn 
better and faster which strategy to use compared with a simple Soar model, but ACT-R 
requires additional state features (Ritter & Wallach, 1998). Models in both architectures can, 
however, modify their choice of strategies. The role of (multiple) strategies has been 
investigated within the EPAM architecture in several tasks, such as concept formation 
(Gobet et al., 1997) and expert memory (Gobet & Simon, 2000; Richman, Gobct, 
Staszewski, & Simon, 1996; Richman et al., 1995). 

These models could also be crossed with emotional and other non-cognitive effects to 
see how personality types respond differently in different circumstances (broadly defined). 
This could even be extended to look at how teams with different mixes of personalities work 
together under stress. 

The amount of work to realize a model in this area will depend on the number of factors 
taken into account by the model. Providing a full model of personality and how it interacts 
with tasks and with other models is a fantasy at this point. However, a minimal piece of 
work would take an existing model and give it more of a personality. A more extensive 
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project over a year or two would apply several of these techniques and see how it starts to 
match human data. 

6.1.7 Including a Model of Situation Awareness and Rapid Decision Making 

Novices have to do problem solving. Experts can do problem solving but save effort 
(or improve their problem-solving performance) by recognizing solutions based on the 
problem. Viewed broadly, a model that does this transition starts to provide an 
explanation of situation awareness and Rapid Decision Making (RDM) as a result of 
expertise and recognition. 

Able (Larkin, 1981) and its recent re-implementations (Ritter et al., 1998b) provide a 
simulation explaining the path of development from novice to expert in formal domains 
(i.e., those where behavior is based on manipulated equations such as physics or math). The 
early (or barely) Able model works with a backward-chaining approach, that is, it starts with 
what is desired and chooses domain principles to apply based on what will provide the 
desired output. This approach is applied recursively until initial conditions are found. The 
chunking mechanism in Soar gives rise to new rules that allow the model to use a forward- 
chaining method that is faster. That is, from the initial conditions new results are proposed. 
The rules are applied until the desired result is found. Students at the University of 
Nottingham have applied the Able mechanism to several new domains. Their examples are 
available at www.nottingham.ac.uk/pub/soar/nottingham/student-projects.html. 

Work could be done to translate this mechanism, which has worked in Lisp and in 
several versions of Soar, into other architectures and extend it from a simulation to a full 
process model. This would require a rather modest amount of effort, less than a 
programmer-year to get started if the programmer was familiar with Soar. Applying it in a 
realistic domain would take longer. 

6.1.8 Using Tabu Search to Model Behavior 

The internal architecture of a combatant might be constructed from a perceptual module 
that is closely coupled to the synthetic environment and can be modified by plug-in items 
that alter the incoming data to be processed (night-vision aids, etc.). The results of 
perception are crudely classified using a learning system such as a multi-layer perceptron, 
which triggers a rapid emotional response and consequent reactive behavior. This behavior 
might be generated using an SDM that finds the nearest match to previous scenarios and is 
capable of producing a sequence of outputs rather than a single-state result. Both perception 
and emotional response are calibrated by a perceptual and personality model that may be 
unique to individual entities, albeit assigned from a known distribution. 

The cognitive processing would be rule-based using an established cognitive model, for 
example, ACT-R, with planning activities augmented by a Tabu search. There would be 
interactions between the state of the entity (including its emotional state) and the cognitive 
processing based on psychological data on human performance under stress. This approach 
is similar and perhaps a generalization of Sloman's meta-architecture, and the Soar and 
PS1 architectures. 
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6.2 Projects Supporting Integration 

The projects presented here roughly address the issues raised in Chapter 3. Integration is 
approached in two ways here: integrating model components and integrating the model with 
simulations in more psychologically plausible ways. Several projects described in this 
subsection could be equally at home in the set of projects for making modeling routine 
because the two areas are related. 

6.2.1 Models of Higher-Level Vision 

It has been argued that an understanding of higher-level vision is necessary for 
continued development of models in synthetic environments (Laird, Coulter, Jones, Kenny, 
Koss, & Nielsen, 1997) and we agree (Ritter et al., 2000). Neisser's (1976) perceptual cycle 
is just starting to be explored with models. 

There are several areas of Higher-Level Vision (HLV) that are of particular interest for 
military modeling. These areas include: 

• How information from long-term memory indicates incoming danger or 
serious change in the environment. 

• How HLV directs attention. 

• How  HLV   integrates  various  aspects  of information,   or  integrates 
information occurring at different times. 

• How HLV can be used to facilitate learning. 

• How HLV can be used in planning and problem solving. 

To put it simply, HLV is at the interface between Lower-Level Vision (LLV) and 
postulated memory entities such as productions, schemas, concepts, and so on. At the 
present time, this interface is poorly understood, perhaps because LLV and long-term 
memory are not understood in a sufficiently stable way. (However, see Kosslyn & Koenig, 
1992, for neuropsychological hypotheses about HLV.) 

Most models of cognition such as Soar and ACT-R (actually, most architectures 
reviewed by Pew & Mavor, 1998) use modeler-coded information, which avoids dealing 
with the interface between LLV and long-term memory constructs. Neural nets for vision 
have been used to go from pixel-like information to features or even higher but have not 
been incorporated into higher-cognition models. CAMERA (Tabachneck-Schijf, Leonardo, 
& Simon, 1997), and to a certain extent EPAM (Feigenbaum & Simon, 1984; Richman & 
Simon, 1989), explore ways in which features may be extracted from low-level 
representation, and may be combined into long-term memory constructs. 

The relationship of HLV and problem solving is undoubtedly an area where more 
research should be carried out. For example, modeling instruction and training requires a 
theory of how low-level acoustic input merges with low-level visual input and connects to 
long-term memory knowledge. In some cases vehicles and gunfire will be heard rather than 
seen and sounds will direct visual attention in the appropriate direction. Perceptual models 
of hearing are also well-developed and exploited with dramatic success in, for example, the 
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MPEG-2 compression standard that is likely to form the basis for much broadcast and 
recorded sound in the future. The variance among individuals is large for both auditory and 
visual perception, and both processes are degraded temporarily or permanently by intense 
overload, as is likely in a military environment. 

Work extending this approach to create integrated architectures (Byrne et al., 1999; Hill, 
1999; Ritter & Young, 2001) is ongoing. Significant progress will require at least a year- 
long project, and a longer period would be more appropriate. 

6.2.2 Tying Models to Task Environments 

Tying cognitive models to synthetic environments in psychologically plausible ways 
should be easier. There are two approaches that seem particularly useful and plausible that 
we can ground with particular suggestions for work. They are consistent with Pew and 
Mavor's (1998, p. 200) short-term goal for perceptual front-ends. 

The first approach is to provide a system for cognitive models to access ModSAF's 
display and pass commands to it. This approach has the advantage that it hides changes in 
ModSAF from the programmer/analyst and from the model. The disadvantage is the need 
for ModSAF experts, programmers, users, time, and money to make it work. There has been 
such a system created for Soar models to use ModSAF (Schwamb, Koss, & Keirsey, 1994), 
but it is our impression that this system, although it was quite useful, needs further 
development and dissemination. 

The second approach is to create a reusable functional model of interaction based on a 
particular graphics system or interface tool (as does the Nottingham Functional Interaction 
Architecture and ACT-R/PM). A functional rather than a complete model may be more 
appropriate here as a first step. This functional approach has been already created in Tcl/Tk 
(Lonsdale & Ritter, 2000), Garnet and Common Lisp (Ritter et al., 2000), Visual Basic 
(Ritter, 2000), Windows bitmaps (St. Amant & Riedl, 2001), Windows 98 objects (Misker, 
Taatgen, & Aasman, 2001), and most recently in JAVA. They could be created in Amulet, 
X-windows, Delphi, or a variety of similar systems, each of which allows models to interact 
with synthetic environments through a better programming interface. A functional model 
would then provide the necessary basis for improving the accuracy and psychological 
plausibility of interaction. 

This approach to providing models access to information in simulations could also 
support creating cognitive models in general, such as for problem solving, working memory, 
and the effect of visual interaction. These could be later assimilated back into models and 
architectures in the synthetic environments. 

An excellent programmer very familiar with their language can now create an initial 
system in about two weeks. Integrating and applying these models takes several months 
to a year. 

6.2.3 Ongoing Review of Existing Simulations 

To provide for reuse and to understand the current situation, a review of simulation 
systems used (for as broad a geographic region as possible, working with allied nations if 
possible) should be created that is similar to the listing in Pew and Mavor (1998, chap. 2 
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Annex). This listing, for example, could initially be created by an intercalated year (co-op) 
student and then maintained as part of standing infrastructure. This listing could provide an 
initial basis for understanding what the total needs were and the totality of current 
simulation efforts. While the U.S. Defense Modeling and Simulation Office may do this in 
the United States, we do not know of similar efforts in the United Kingdom. 

6.2.4 Focus on a Flagship Task 

Supporting all the uses of synthetic forces as shown earlier in Table 1.1 with a single 
model of behavior is probably impossible in the short term. The uses of simulations in 
operations research, training individual group behavior, and examining new materials or 
doctrine are too disparate to be met by a single approach. While the various levels and uses 
of simulations mentioned here are related by the real world they all represent, it does not 
appear to be possible in the next 5 to 10 years to integrate them to the extent to which the 
real world is integrated. 

While there may be some systems that allow multiple use, and there will certainly be 
some reuse between these areas, a focus for work must be selected. Therefore, a more 
narrow focus on the most important uses should be adopted by funding agencies. Taking a 
more focused approach appears to be happening in several places already. A selective focus 
on the most approachable or natural set of uses is more likely to be successful in the short 
term and may provide a better foundation upon which to build in the long term. Discussion 
of these issues should be grounded, if possible, with a set of potential uses with possible 
systems and domains that will be used in the next 5 to 10 years. Complete unification is not 
likely in that time period, nevertheless significant reuse should be sought. 

Having a focus would also support the choice of a specific application. Applications can 
then be chosen with a user audience in mind. Having a specific audience will help the 
application to be useful and seen as useful by a well-defined user community. 

Work that attempts to serve too many needs will serve all of them poorly. Projects and 
research programs will have to pick a domain and an application (or two), and work with 
them. This application could be an existing use or application or it could be a new use. 
Work with simulations for training often have high payoffs. Augmenting existing training 
would be a natural place to consider starting. 

The students being trained could also be used to help test the simulation. Apocryphal 
tales from MIT suggest that building computer-based tutors to deliver instruction is as 
useful for learning as using the resulting tutors. Creating and validating these models would 
be good training for such students as well. 

6.2.5 A Framework for Integrating Models With Simulations 

Perhaps the most significant current requirement is a way to integrate multiple cognitive 
and behavioral architectures into synthetic environments. Currently, it takes a large amount 
of effort to introduce new models of behavior and connect them directly to simulations via 
the Distributed Interactive Simulation (DIS) protocol. Coupling cognitive architectures to a 
simulation via ModSAF is probably marginally easier because ModSAF, while difficult to 
use, provides physical models and an interface to the network. The left-hand side of Figure 
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6.1 shows the organization of systems like Tac-Air Soar that interact with ModSAF to 
generate behavior. 

A worthwhile medium- to long-range goal would be to develop utilities to support 
making a tool like ModSAF even more modular. The core activities of supporting 
communication across the network for simulation and supporting the physical model need to 
be provided, but are not of particular interest for modeling behavior. 

Efforts have attempted to provide similar interfaces for Soar; however, they have never 
been fully successful. They have made hooking up Soar easier but have not yet made it easy 
(e.g., Ong, 1995; Ong & Ritter, 1995; but also see the most recent work by Jones, 2001, and 
Wallace, 2001). Work on the Tank-Soar simulator (provided as a demo in the latest release 
of Soar, Soar 8.3) might provide a path for this. 

The right-hand side of Figure 6.1 shows how future systems might interact with 
ModSAF using the same interface that users see through a simulated eye and hand designed 
to allow models to interact with synthetic environments (Ritter, Jones, Baxter, & Young, 
1998a). The interface to the physical simulation could no doubt be made more regular and 
easier to use so that other architectures, such as SimAgent, could be hooked up to it. We 
suspect this project might take a good programmer familiar with ModSAF about half-time 
over a year because we had a similar system built in 2 weeks by someone who was an expert 
in their graphic programming language. A much longer time should be allowed. This system 
requires knowing ModSAF very well because it will make use of all of ModSAF and may 
require extending ModSAF. 

ModSAF 
network support 

physical model 

GUI 
automated 
behaviour 

cross compilation 

GUI 

Cog Arch 

ModSAF 

simulated 
Eye/Hand 

Cog Arch 

Figure 6.1: On the left, a functional description of Tac-Air Soar and how it uses ModSAF. On 

the right, a perceptual interface to ModSAF. 
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6.2.6 A Framework for Integrating Knowledge 

Currently, there are multiple knowledge sets (as models) in different simulations that 
exist in multiple formats. It would be useful to create a framework for integrating multiple 
knowledge sets, allowing the knowledge to be reused in different simulations. 

One way to create a framework for integrating knowledge is to create a task editor that 
could take a knowledge set and compile it for different architectures. The editor would have 
to be based on a high-level description of knowledge, such as generic tasks (Wielinga, 
Schreiber, & Breuker, 1992). These generic tasks would then be compiled into things such 
as an ACT-R or Soar rule-set. 

There are potentially huge payoffs from this very high-risk project. First, this project 
would provide a way to reuse knowledge in multiple simulations. Second, the reuse that 
would arise would help validate models and might provide a way forward for validating 
architectures. Third, this project would provide another way of documenting behavior 
models. The (presumably) graphic representation would allow others to browse and 
understand the model on a high level. Fourth, it would assist in writing models. In most 
cases, there are a lot of low-level details in creating these models that are not of theoretical 
interest but require attention, such as using the same attribute name consistently (recent Soar 
interfaces now support this). A high-level compiler for knowledge like this would bring with 
it all the advantages traditionally associated with high-level languages. When done for Soar, 
the higher-level language allowed models to be built two to three times faster 
(Yost, 1992, 1993). 

PC-Pack (www.epistemics.co.uk) is a potential tool to start building upon. 
Implementing an initial, demonstration version of this approach would take a good 
programmer 6 to 12 months. Putting it to use would take longer. 

6.2.7 Methods for Comparing Modeling Approaches 

We find ourselves in a position where a number of different approaches to simulating 
human behavior are available. Some of these approaches, at least, are based on datasets 
close enough to see themselves as rivals, and make competing claims about their suitability 
and quality. How can we assess and compare them? 

There can, of course, be no one method that answers such a question. Earlier chapters of 
this report have discussed how practical considerations such as usability and 
communicability of models come into play as well as scientific qualities such as agreement 
with data. Thus, a wide range of comments about a model or architecture can be relevant to 
choosing between them. 

However, there are some methods available that are too loose and varied to constitute a 
"technique" but are useful nonetheless for comparing and contrasting such differing 
approaches. They take the form of matrix exercises, in which a range of modeling 
approaches are pitted against a battery of concrete scenarios to be modeled. Young and 
Barnard (1987) provide the basic rationale for such a method and explain how it can be used 
to judge the fit and scope of a modeling approach. They argue, first, that the modeling 
approaches need to be applied to concrete scenarios. It is not sufficient to try comparing 
approaches on the basis of their "features" or "characteristics." Second, it is important to use 
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a range of scenarios. Taking just a single case will inevitably introduce a bias towards or 
against certain approaches, and will fail to provide an indication of their scope. Young, 
Barnard, Simon, and Whittington (1989a) provide a short example of such a matrix exercise, 
and show how the entries in the matrix can be interpreted. 

This kind of matrix exercise derives from the idea of a "bake-off between rival 
approaches but also differs in important respects. There is unlikely to be a "winner," one 
approach that is regarded as the best in all respects. Moreover, the matrix exercise is 
fundamentally cooperative rather than competitive. Instead of finding the "best" approach, 
bake-offs provide a tool for probing the scope of applicability of the different approaches, 
and investigating their relative strengths and weaknesses, advantages and disadvantages, for 
later modification and fusion. Pew and Mavor appear to call for this kind of activity (1998, 
pp. 336-339) as well. 

Some exercises of this kind have been performed in public. At the Research Symposia 
associated with the CHI conferences in 1993 and 1994, Young (in 1993) and Young and C. 
Lewis (in 1994) organized such matrix exercises on the design of an undo facility for a 
shared editor (1993), and on the analysis of the persistent unselected window error and of 
the design of an automated bank-teller machine as a walk-up-and-use device (in 1994). 
Furthermore, there are precedents for such an exercise in a military research context. In 
1993, NASA funded a comparative study of models of pilot checklist completion. The 
Office of Naval Research has funded, on a longer time scale, multiple analyses and 
modeling of several interactive tasks using hybrid architectures (Gigley & Chipman, 1999). 
The speech recognition community in the United States uses this approach in a quite 
competitive way as well. 

The U.S. Air Force has recently started a similar program called Agent-Based Modeling 
and Behavior Representation (AMBR) to explore models of complex behavior 
(www.williams.af.mil/html/ambr.html). This multi-team project comparing four cognitive 
architectures was recently reported at the 2001 Computer Generated Forces Conference. For 
an overview, see Gluck and Pew (2001a; 2001b); Tenney and Spector (2001) provide a 
summary of the model to data fits in the most recent comparison round. Several more 
iterations of comparisons across architectures using different types of tasks are planned. 

A final but important point about such an exercise is that it cannot be done successfully 
inexpensively. The exercise requires earmarked and realistic funding to provide useful 
results. A considerable amount of work is required: first in negotiating, agreeing, and then 
specifying a set of concrete and clearly described scenarios, ideally with associated 
empirical data; and then subsequently for applying the modeling approaches to the 
scenarios, performing the comparisons, and drawing conclusions. Multiple research groups 
are used, and the funding has been leveraged by the groups' existing work and multiple 
funding sources. 

6.2.8 (Re)lmplementing the Battlefield Simulation 

There are strong arguments for implementing communicating agents and intra-agent 
processes in JAVA. These are discussed in Bigus and Bigus (1997), and in the context of 
JACK Intelligent Agents by Busetta et al. (1995b). In fact, there are powerful arguments for 
building the entire synthetic agent simulation in JAVA as described below. This is possible 
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within the Higher-Level Architecture (HLA) framework. Implementing Soar in JAVA has 
also been mooted (Schwamb, 1998), as well as ACT-R (see www.jactr.sourceforge.net for 
information on a preliminary JAVA implementation of ACT-R 4, as of May 2001), although 
the usability of these architectures would suffer for this. 

A core system implementation is needed that can then be accessed through Application 
Programming Interfaces (APIs). Supporting software is available for this, but any software 
could be developed for the purpose, provided it conformed with the standard. The core 
system might be written in JAVA or any other language provided only that an API is 
implemented. Similarly, entities may be written in any language, or several, provided that 
they set up calls to the API specification. There are a number of arguments for using JAVA 
as the basis for both individual entity simulation and for building a core system to the HLA 
specification. These are described below. 

The single most attractive advantage of developing a synthetic battlefield simulation within 
a JAVA environment lies in the capabilities available within a Remote Method Invocation 
(RMI) that forms part of the JAVA run-time environment. This is a distributed object model 
with some similarities to Microsoft's Distributed Component Model (DCOM)® but with the 
advantage that it is effective on any platform that supports a JAVA run-time environment. It 
goes well beyond traditional remote procedure calls being entirely object-based, even allowing 
objects to be passed as parameters. Object behavior as well as data can be passed to a remote 
object in a seamless and transparent way. A mortar weapon being passed as an argument to an 
individual infantry man entity and arriving complete with its complement of munitions and 
ability to be fired gives a picture of this capability. The JAVA run-time environment also 
supports a naming and directory service API (JAVA JNDI) that allows the objects of RMI calls 
to be found.        (For more details of this see www.javasoft.com/products/jndi/index.html.) 

To show how such a service might be used, suppose that a simulation of an individual 
paratrooper has been developed. This simulation is a uniquely named JAVA object that can 
be invoked on any machine on the network used for the simulation. The JAVA Naming and 
Directory Interface (JNDI) service will inform a process about which machines have a 
suitable simulation available. To take this an important stage further, we use a class-factory 
object to produce the individual paratrooper objects. This class factory might use 
randomized parameters to make each entity distinct but fitting a known distribution (like 
Cabbage-Patch Dolls®). To introduce these entities into the simulation, a process would ask 
the naming service for a suitable class-factory object. This might be on one of any number 
of machines and is therefore extremely robust against damage to the network. The class 
factory can then be asked to produce any number of paratrooper entities, each of which (in 
JAVA) is capable of serializing itself to any other machine on the network, and running 
there. Indeed, the simulation can be moved from machine to machine at will, perhaps in 
response to a condition such as imminent power failure. 

This approach would also support testing new platforms. A manufacturer might develop 
an improved simulation of a Tornado fighter-bomber. They then could introduce a new 
machine with a suitably registered class-factory object. Once this was connected to the 
network, the new simulation would be immediately available even if this were done while a 
simulation was running. No relinking, recompilation, or even pause in the simulation would 
be needed. The objects could be defined in conformity with the HLA standard. 
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JAVA also supports secure communications and has well-developed APIs for database 
connectivity and for driving graphics devices. An attractive user interface is very much 
easier to develop using the JAVA Foundation Classes (JFC) than, for example, using X- 
Motif. In addition, if a Just In Time (JIT) compiler is available to the RTE, programs 
developed in JAVA show little performance degradation in comparison with C++. 

A synthetic environment could be developed using facilities offered by the JAVA run- 
time environment and existing APIs that would come much closer than existing simulations 
in meeting the design goals of maintainability, versatility, and robustness. This approach 
would have to be agreed upon by multiple communities and requires a large amount of 
resources to be applied uniformly. 

6.3 Projects Improving Usability 

The projects presented here roughly address the issues raised in Chapter 4. This section 
reviews several possible projects for making model building more routine. For practical 
reasons, it is useful to make the model-building process more routine. It is also important for 
theoretical reasons. If the models cannot be created within a time commensurate with 
gathering data, the majority of the work will continue to be data gathering because theory 
development will be seen as too difficult. 

6.3.1 Defining the Modeling Methodology 

There is not yet a definitive approach or handbook for building models that can also be 
used for teaching and practicing modeling cognitive behavior. Newell and Simon's (1972) 
book is too long and mostly teaches by example. Ericsson and Simon's (1993) book on 
verbal protocol analysis has comments on how to create models; although useful, the 
comments are short. VanSomeren, Barnard, and Sandberg (1994) provide a useful text, 
although it is slightly short and some of the details of going from model to data are not 
specified (if indeed they can be). Baxter's (1997) report and Yost and Newell's (1989) 
article are useful examples of the process, but both are tied to a single architecture and not 
widely available. There are other useful papers worth noting, but they are short and not 
comprehensive (e.g., Kieras, 1985; Ritter & Larkin, 1994; Sun & Ling, 1998). 

Rouse (1980) has also made an attempt at describing the modeling process. He 
identifies the following steps as forming an important part of the modeling process: 
(1) definition, (2) representation, (3) calculation, (4) experimentation, (5) comparison, and 
(6) iteration. Rouse mainly focuses on the representation and calculation aspects of 
modeling, particularly from an engineering point of view. He describes several 
methodologies, including control theory, queuing theory, and rule-based production 
systems. He also provides a short tutorial on several of these modeling methods together 
with practical examples of systems engineering models. The examples are taken from a 
wide variety of domains including aviation, air traffic control, and industrial process control. 
It is not a complete treatise on human behavior, but does provide suggestions for methods 
that may be useful in modeling certain aspects of human behavior. 

Similar tutorials and methodological summaries should be created until they converge. 
The results will be useful to practitioners and those learning to model; the latter will be an 
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important audience as this field grows. The output is most likely to require a textbook. A 
year to several years of support would significantly help create this set of learning materials. 

6.3.2 Individual Data Modeling: An Approach for Validating Models 

What is the best way to make theoretical progress in the study of behavior? Is it to 
develop micro-theories that explain a small domain or to aim at a higher goal, and develop 
an overarching theory covering a large number of domains—a unified theory? Modem 
psychology, as a field, has tended to prefer micro-theories. Unified theories have regularly 
appeared in psychology—think of Piaget's (1954) or Skinner's (1957) theories—but it is 
generally admitted that such unified theories have failed to offer a rigorous and testable 
picture of the human mind. Given this relatively unsuccessful history, it was with interest 
that cognitive science observed Newell's (1990; see also Newell, 1973) call for a revival of 
unified theories in psychology. 

One of the reasons for the limited success of Newell's own brand of UTC is that the 
methodology commonly used in psychology, based on controlling potentially confounding 
variables by using group data, is not the best way forward for developing UTCs. Instead, 
Gobet and Ritter (2000) propose an approach, which they call Individual Data Modeling 
(IDM), where (l)the problems related to group averages are alleviated by analyzing 
subjects individually on a large set of tasks, (2) there is a close interaction between theory 
building and experimentation, and (3) computer technology is used to routinely test versions 
of the theory on a wide range of data. They claim that there are significant advantages here, 
that this approach will also help traditional approaches progress, and that the main potential 
disadvantage—lack of generality—may be taken care of by adequate testing procedures. 

IDM offers several particular advantages in this area. It does not require as much data 
because the data will not be averaged but compared on a fine-grained level. Not requiring a 
large amount of data is attractive when the data are detailed or expensive to acquire, or 
where the model makes detailed predictions. The other advantage is that it provides a model 
that produces more accurate behavior on a detailed level. It is this detailed level of behavior 
that will be necessary to not only allow a model to appear human in a Turing test, but also 
lead to accurate training results because it performs like a comparable colleague or foe. 

Work using IDM is ongoing at the University of Nottingham and at Pennsylvania State 
University. A full test would require one to two years of work to gather data and compare it 
with a model. Developing the IDM methodology and applying it could be combined with 
other projects, however, because it is a methodology and not a feature of behavior to include 
in a model. 

6.3.3 Using Genetic Algorithms to Fit Data 

There are two potential uses of genetic algorithms worth highlighting. The first is for 
generating behavior as described above in Section 5.2.1. The second is for optimizing 
model-fits by adjusting their parameters (Ritter, 1991). Most model-fits have been 
optimized by hand, which leads to absolute and relative performance problems. In absolute 
terms, researchers may not be getting optimal performance from their models. In relative 
terms, comparisons of hand-optimized models may not be fair. (Sometimes even one model 
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is optimized and the other not.) In the case of models with multiple parameters (with 
submodels to include), this job is not tractable by hand. 

The results obtained by optimizing models with genetic algorithms suggest that 
optimizations done by hand are likely to be inferior to those done by genetic algorithms 
(Ritter, 1991) or by other machine-learning techniques (Butler, 2000). Use of genetic 
algorithms (or similar techniques) would improve performance in absolute terms, provide 
fairer comparisons between models, and encourage the inclusion of parameter set behavior 
in model comparisons. Several years of a PhD student working within a project with a 
model to optimize is probably a good way to progress work in this area. 

This optimization should initially be done with an existing model so that the developers 
of the interface have a ready-made model and audience. The basic approach is simple and 
robust, and should be straightforward to demonstrate. Making the optimization routine and 
portable are separate and more advanced steps, so this project could take almost any amount 
of resources, ranging from a month to several years. 

6.3.4 Environments for Model Building and Reuse 

There remains a need for better environments for creating models. Few modeling 
interfaces provide much support for the user to program at the problem-space level or even 
the knowledge level, although the COGENT interface is interesting as an example 
of usability. 

Soar, in particular, needs a better interface. While there is now a modest interface, even 
the latest versions of the Soar interface (Kalus & Hirst, 1999; Laird, 1999; Ritter et al., 
1998b) are not as advanced as many expert system shells and are just becoming as 
comprehensive as the previous, Lisp-based version (Ritter & Larkin, 1994). The Soar 
interface is, however, providing increasing amounts of support at the symbol level (Jones, 
Bauman, & Laird, 2001; Roytam, 2001) and higher, including model-specific displays 
(Jones, 1999b). TAQL (Yost & Newell, 1989) and Able (Ritter et al., 1998b) have been 
moderately successful, but modest attempts to create high-level tools in Soar, for example. 
Gratch's (1998) planning-level interface should be expanded and disseminated as a 
modeling interface. Knowledge acquisition tools and techniques (e.g., Cottam & Shadbolt, 
1998; O'Hara & Shadbolt, 1998) might be particularly useful bases upon which to build. 

Associated with this project would be general support for programming. This includes 
lists of frequently asked questions, tutorials, and generating models or model libraries 
designed for reuse. These libraries should either exist in each architecture or in the general 
task language developed in the previous task. These would serve as a type of default 
knowledge for use in other applications. We can already envision libraries of interaction 
knowledge (about how to push buttons and search menus), arithmetic, and simple 
optimization like the default knowledge in Soar. 

Work on improving the modeling interfaces for each architecture should be incorporated 
as part of another modeling project so that the developers of the interface have a ready-made 
audience. There are multiple additions that would be useful and multiple approaches that 
could be explored, so this project could take almost any amount of resources, ranging from a 
month to several years. 
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6.3.5 Automatic Model Building 

Most process models induced from protocols are created by hand. There has been some 
work to do this automatically or semi-automatically with machine-learning techniques. 
Semi-automatic model generation is done in the event-structure modeling domain (a 
sociological level of social events) by a program called Ethno (Heise, 1989; Heise & Lewis, 
1991). Ethno iterates though a database of known events finding those without known 
precursors. It presents these to the modeler, querying for their precursors. As it runs it asks 
the modeler to create simple qualitative, non-variablized token-matching rules representing 
the event's causal relationships based on social and scientific processes. The result at the 
end of an analysis is a set of 10 to 20 rules that shape sociological behavior in that area. In a 
sense, the modeler is doing impasse-driven programming (i.e., what is the next precursor for 
an uncovered event not provided by an already existing rule?). After this step, or in place of 
it, the modeler can compare the model's predictions with a series of actions on a 
sociological level (a protocol in the formal sense of the word). The tool notes which actions 
could follow and queries the modeler based on these. Where mismatches occur, Ethno can 
present several possible fixes for configuration. Incorporating the model with the analysis 
tool in an integrated environment makes it more powerful. It would be a short extension to 
see the social events as cognitive events in a protocol. 

Stronger methods for building models from a protocol are also available. Cirrus 
(VanLehn & Garlick, 1987) and ACM (Langley & Ohlsson, 1984) will induce decision trees 
for transitions between states that could be turned into production rules given a description 
of the problem space, including its elements and the coded actions in the protocol. Cirrus 
and ACM use a variant of the ID3 learning algorithm (Quinlan, 1983). (ID3 induces rules 
that describe relationships in data.) 

These tools look like a useful way to refine process models. Why is automatic creation 
of process models not done more often? Perhaps it is because these tools do not create 
complete process models. They take a generalized version of an operator that must be 
specified as part of a process model. It could also be that finding the conditions of operators 
is not the difficult problem but that creating the initial process model and operators is. It 
could also be that it is harder to write process models that can be used by these machine 
learning algorithms. In any case, these methods should be explored further. 

Diligent (Angros, 1998), Instructo-Soar (Huffman & Laird, 1995), and Observo-Soar 
(van Lent, 1999) are approaches to create models in Soar that learn how to perform new 
tasks by observing behavior and inferring problem-solving steps to duplicate them. Related 
models have been used in synthetic environments (Assanie & Laird, 1999; van Lent & 
Laird, 1999). They have had limited use but suggest that learning through observation may 
be a way to create models as it is an important way that humans learn. Their lack of use 
could simply be due to the fact that they are novel software systems. As novel systems they 
are probably difficult for people other than their developers to use and will have to go 
through several iterations of improvement (like most pieces of software) before they are 
ready for outsiders. With a small user base (so far), the need has not forced software 
development, which has further decreased their potential audience. 
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Automatic modeling tools need to be developed. Machine-learning algorithms and 
theories of cognition are developed enough that this could be a very fruitful approach. A 
several-year effort here could yield large benefits of more routine modeling. 

6.3.6 Improvements to ModSAF 

A major problem with ModSAF is usability. ModSAF is large and has a complicated 
syntax. Users report problems learning and using it. One way to improve its usability might 
be a better interface; better manuals and training aids might also be useful. 

The approach used by models of behavior to interact with basic simulation capabilities 
such as ModSAF needs to be regularized. A fundamentally better approach might be 
possible. There exists an interface between ModSAF and Soar that partly provides a model 
eye and hand. This eye/hand could be improved to provide a more abstract interface to 
ModSAF, one that might be easier to use (Schwamb et al., 1994). 

One thing we have repeatedly noted is that getting models to interact with simulations is 
more bearable when both are implemented within the same development environment. 
When they are not, work proceeds much more slowly (Ritter et al., 2000; Ritter & Major, 
1995), requiring a mastery of both environments. The situation is exacerbated because the 
development and use of any communication facility tends to be an ill-defined problem with 
numerous wild subproblems (i.e., problems where the time to solution can be high and with 
a large variance, that is, not easily predicted). So, for example, although the ModSAF Tac- 
Air system (Tambe, Johnson, Jones, Koss, Laird, Rosenbloom, et al., 1995) appears as if it 
was developed using joint compilation techniques, it was probably difficult to use because it 
implements communication between ModSAF and the Tac-Air model using sockets. 
Although informal communication with researchers in the Soar and robotics communities 
suggest that the use of sockets may be becoming more routine, this has not always 
been the case. 

6.4 Other Applications of Behavioral Models in Synthetic Environments 

There are numerous ways that behavioral models could be applied outside the military 
domain. We will examine four of them here. 

The most obvious additional application of the models arising from approaches 
proposed in this report is in the provision of automated support for system operators. This 
support can take the form of intelligent decision-support systems or embedded assistants 
that guide operator behavior. There are some existing applications, most notably the Pilot's 
Associate (Geddes, 1989), its derivative, Hazard Monitor (Greenberg, Small, Zenyah, & 
Skidmore, 1995), and CASSY (Wittig & Onken, 1992), all from the aviation domain. In the 
United Kingdom, the Future Organic Airborne early warning system is attempting to insert a 
knowledge-based system into the Osprey aircraft and radar simulation to assist users. 

These assistants, because they have a model of what the user is likely to do next, should 
be able to assist the user: if not by performing the task, then by preparing materials or 
information, or by modifying the display to help distinguish between alternatives or make 
performing actions easier. In the past, such assistants have had only a limited ability to 
model users. With increased validity and accuracy, these models may become truly useful. 
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The second application is in education and training. The uses in education have been 
fairly well illustrated by Anderson's work with cognitive model-based tutors (Anderson, 
Corbett, Koedinger, & Pelletier, 1995). In training, behavioral models can be used to 
provide experts to emulate and the same knowledge can also be used to debrief students' 
performances (Ritter & Feurzeig, 1988). The knowledge can also be used to populate 
adversaries and colleagues in the same environment (Bloedorn & Downes-Martin, 1985). 

Training needs exist outside the military in several domains where dynamic models are 
necessary. Mining, for example, is starting to use virtual reality to train simple tasks 
(Hollands, Denby, & Brooks, 1999). Virtual reality is already being used to train hazard- 
spotting, avoiding mine machinery as a pedestrian, and driving vehicles underground 
(Schofield & Denby, 1995). A web search on virtual reality and training will indicate a wide 
range of other areas of application as well. 

The third application is in entertainment. This has been proposed for some time as an 
application. A recent report by the U.S. National Research Council (Computer Science and 
Telecommunications Board, 1997) suggests that is it possible to use synthetic environments 
and the behavioral models in them for entertainment. This is currently being done by the 
Institute for Creative Technologies at the University of Southern California. 

The fourth application is in systems analysis. The behavioral models can be used to 
examine different system designs to measure errors, processing rates, or emergent strategies. 
To return to mining again, truck models in a simulation can be used to examine road layouts 
in mines (Williams, Schofield, & Denby, 1998). 

6.5 Summary of Projects 

We have laid out important objectives for models of behavior in synthetic environments 
in the important areas of providing more complete performance, increased integration of the 
models with each other and with synthetic environments, and improved usability of the 
models. A wide range of funding bodies may be interested in supporting these projects 
because most of these projects have both engineering and scientific results. They will not 
only improve engineering models of human behavior, but they will also improve our 
understanding of behavior and our general scientific ability to predict and model human 
behavior generally. 

These proposals, taken as a whole, call for several broad and general research programs. 
They suggest several moderating variables that affect cognition, including emotions and 
behavioral moderators, personality, and interactions with the environment, which should be 
included in cognitive architectures. They argue for creating or moving towards a more 
uniform format for data and models and a more clearly defined approach for modeling. 
There are also several concrete suggestions for making modeling easier and more routine, 
including providing more usable modeling environments and supporting automatic model 
generation. Finally, we were able to suggest some further applications of models of behavior 
in synthetic environments. 
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Description of Soar and ACT-R 

Soar and ACT-R are two of the most commonly used cognitive architectures. They can 
be seen as theories of cognition realized as sets of principles and constraints on cognitive 
processing, a cognitive architecture (Newell, 1990). They both provide a conceptual 
framework for creating models of how people perform tasks. They are thus similar to other 
unified theories in psychology, such as PSI and COGENT. 

Both Soar and ACT-R are supported by a computer program that realizes those theories 
of cognition. There are debates as to whether and how the theory is different from the 
computer program, but it is fair to say that they are at least highly related. It is generally 
acknowledged that the program implements the theory and there are commitments in the 
program that must be made to create a running system that are not in the theory—places 
where the current theory does not say one thing or another. 

As cognitive architectures, their designers intend them to model the full breadth and 
width of human behavior. Such cognitive architectures, including the ones discussed in this 
report, do so to a greater or lesser extent, usually with the areas covered increasing 
monotonically over time. This approach to modeling human cognition is explained in books 
by Newell (1990) and Anderson (Anderson, 1993; Anderson & Lebiere, 1998). These books 
also provide introductions of Soar and ACT-R. 

Further information on both Soar and ACT-R are available from the references cited 
here, as well as the sources included in the bibliography at the end of this appendix. The 
sources in the bibliography were used to write this appendix, particularly Johnson (1997), 
Jones (1996a, 1996b), and Ritter (2001). 

B.1 Background of Soar and ACT-R 

Soar and ACT-R are each based on a set of different theoretical assumptions, reflecting, 
largely, their different conceptual origins. Soar was developed by combining three main 
elements: (1) the heuristic search approach of knowledge-lean and difficult tasks, (2) the 
procedural view of routine problem solving, and (3) a symbolic theory of bottom-up 
learning designed to produce the power law of learning (Laird, Rosenbloom, & Newell, 
1986). However, many of the constraints on Soar's theoretical assumptions consist of 
general characteristics of intelligent agents, rather than detailed behavioral phenomena. 
Soar's outlook is more biased towards performance because it arose out of an Al-based 
tradition. 

In contrast, ACT-R grew out of detailed phenomena from memory, learning, and 
problem solving (Anderson, 1983, 1990; Singley & Anderson, 1989). ACT-R is thus suited 
more for predicting slightly lower-level phenomena, and is slightly more suited for 
predicting reaction times more accurately, particularly for tasks under 10 seconds in 
duration. These differences are relative; both architectures have been used for both high- 
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and low-level models, with attention paid to both performance and time predictions. ACT- 
R's outlook is more biased towards predicting reaction-time means and distributions 
because it arose out of a more experimental psychology tradition. 

B.2 Similarities Between Soar and ACT-R 

Soar and ACT-R can be seen as similar in numerous ways. They both have two kinds of 
memory, declarative (facts) and procedural (rules), although they represent these items 
differently. Typical instantiations of them now have input provided through a model of 
perception and output buffered through a model of motor behavior (Byrne, 2001; Chong, 
2001; Ritteretal., 2000). 

Both Soar and ACT-R model behavior by reducing much of human behavior to 
problem solving. Soar does this rather explicitly, being based upon Newell's information 
processing theory of problem solving (Newell, 1968), whereas ACT-R merely implies it by 
being goal-directed. 

In both architectures these memories are conceptually infinite, with no provision 
being made for the removal of any memory item in ACT-R (the Soar architecture does 
perform removal of declarative memory, which therefore can be seen as a type of short- 
term memory). Manipulation of declarative memory can be accomplished by adding new 
items or changing existing ones. For procedural memory, rules may only be added to 
both architectures. 

The course of processing involves moving from an initial state to a specified goal 
state. ACT-R has only one possible goal state (Version 5), whereas Soar may have 
several of them arranged in a stack. Movement between the initial and goal states usually 
involves the creation of sub-goals to accomplish the various parts leading up to the 
satisfaction of the goal. 

Both ACT-R and Soar maintain a goal hierarchy where each subsequent sub-goal 
becomes the focus of the system. In ACT-R, these must be satisfied in a serial manner and 
in the reverse of the order they appear in the hierarchy (which is not directly visible to both 
the model and the modeler). Soar generally proceeds in a serial way as well, but is capable 
of removing (or solving) intermediate sub-goals should the current problem solving resolve 
a sub-goal that is much higher in the goal hierarchy. This difference makes ACT-R 
potentially less reactive, although work is in progress to make ACT-R more reactive 
(Lebiere, 2001). 

B.3 Differences Between Soar and ACT-R 

There are also fundamental differences between the two architectures. Soar only moves 
between states through changing the state as part of a decision procedure, which rules can 
vote on but cannot directly cause. In Soar, when no more productions can fire, an operator is 
selected or a state is modified. This whole process is called a decision cycle. Where an 
operator cannot be selected (e.g., due to preferences for the set of operators conflicting each 
other or not being complete), a sub-goal is created with a goal to choose the next operator. 
Movement between states is done in ACT-R by firing productions, which may change the 
state and goal stack directly. 
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Soar allows multiple rules to fire in parallel. This may lead to impasses because the 
knowledge in the rules may suggest different operators, but problem solving is available to 
resolve this. In ACT-R, when the conditions of several productions are met, a conflict 
resolution mechanism selects the production that it estimates to have the highest gain. 

Learning in Soar occurs only for production memory. New rules are created by the 
architecture whenever a sub-goal is resolved, such that when next encountering the same 
situation, the new production fires without the need to enter a new sub-goal. This type of 
information can include which operator to select, or how to implement an operator. These 
rules tend to be atomic, and in nearly all cases can be seen as immediately fully learned. 
This learning mechanism (chunking) can implement a wide range of learning effects, 
including long-term declarative memory learning—for long-term declarative information is 
represented solely as the result of procedural memory. 

ACT-R learning involves both declarative and procedural memory. When rules fire they 
become stronger, and as declarative memories are used more they are strengthened as well. 
Each production also has an expected gain value based on its probability of success and its 
cost and the current goal's value. The expected gain is used for conflict resolution; the 
production with the highest expected gain is selected when several productions are possible 
matches. The more often the production meets with later success (e.g., the sub-goal ends up 
being solved), the higher this probability for the rule will become. This strength also 
influences the activation of the declarative memory items that are matched by the condition 
of the production, and also the rule execution time. 

Each item in declarative memory has an associated activation that changes based upon 
how often it has been used, and how strongly it is associated with other items that are being 
used. The more often an item is used, the higher its base level activation will become. The 
more strongly associated an item is with ones that are being used, the more chance that item 
has for having its activation raised. 

A rule learning mechanism is less often used in ACT-R models, and when it has been 
used, the resulting rules are typically created in a nascent state such that they have to be 
created several times before they are fully learned. 

B.4 Bibliography for Soar and ACT-R 

ai.eecs.umich.edu/soar/, the Soar Group's homepage 

act.psy.cmu.edu/, the ACT-R Group's homepage 

acs.ist.psu.edu/soar-faq, Soar Frequently Asked Questions list 

acs.ist.psu.edu/act-r-faq, ACT-R Frequently Asked Questions list 

Jones, G. (1996). The architectures of Soar and ACT-R, and how they model 
human behaviour. Artificial Intelligence and Simulation of Behaviour Quarterly, 96 
(Winter), 41-44. 
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Johnson, T. R. (1997). Control in ACT-R and Soar. In M. Shafto & P. Langley (Eds.), 
Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society (pp. 343- 
348). Hillsdale, NJ: Erlbaum. 

Ritter, F. E. (2002). Soar. In Encyclopedia of cognitive science. London: Macmillan. 
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Glossary of Acronyms and Abbreviations 

ABC 

ACT-R 

ACT-R/PM 

AI 

AMBR 

APEX 

API 

ATAL workshops 

BDI architectures 

CES 

CHIRP 

CHREST 

CMAC 

CoCoM 

COSIMO 

CREAM 

DERA 

DCOM 

DIS 

EPAM 

EPIC 

FLAME 

GAs 

A* search with Bounded Costs 

Adaptive Control of Thought - Rational 

A perceptual-motor component added to 
ACT-R 

Artificial Intelligence 

Agent-Based Modeling and Behavior 
Representation project 

A tool for applied human performance 
modeling developed at NASA 

Application Programing Interface 

Architectures, Theories, And Languages 
Workshop series 

Architectures based on representing Beliefs, 
Desires, and Intentions 

Cognitive Environment Simulation 

Confidential Human Factors Incident 
Reporting Program 

Chunk Hierarchy and REtrieval STructures 

Cerebellar Model Arithmetic Computer 

Contextual Control Model 

Cognitive SIMulation MOdel 

Cognitive Reliability and Error Analysis 
Method 

Defence Evaluation and Research Agency 
(UK) 

Distributed Component Model 

Distributed Interactive Simulation (system) 

Elementary Perceiver and Memoriser 

A cognitive architecture based on a 
production rule interpreter that assumes no 
cognitive limitations on processing and a set 
of perceptual motor processors that provide a 
limitation on cognition. 

Fuzzy Logic Adaptive Model of Emotions 

Genetic Algorithms 
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HCI 

HLA 

IDM 

IMPS 

JACK 

JAVA 

JFC 

JNDI 

KBS 

LTM 

MLP 

ModSAF 

NDM 

ONR 

RDM 

RMI 

SDM 

SEs 

SMOC 

SRG 

STM 

UTC 

Modeling Human Performance 

Human-Computer Interaction 

Higher-Level Architecture 

Individual Data Modeling, modeling based on 
fitting the behavior of individuals and then 
aggregating the results, as compared with 
fitting data aggregated across subjects. 

Internet-based Multi-agent Problem Solving 

JAVA Agent Compiler and Kernel 

A procedural language used to support web 
applications 

JAVA Foundation Classes 

JAVA Naming and Directory Interface 

Knowledge-Based Systems 

Long-Term Memory 

Multi-Layer Perceptron 

Modular Semi-Automated Forces 

Naturalistic Decision Making 

Office of Naval Research 

Rapid Decision Making 

Remote Method Invocation 

Sparse Distributed Memory 

Synthetic Environments 

Simplified Model Of Cognition 

System Response Generator 

Short-Term Memory 

Unified Theory of Cognition 
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